A Leuze electronic

the sensor people

ODS... 9 / OD... 96B
Optical Distance Sensors

© 2014
Leuze electronic GmbH + Co. KG
1 General information 6
1.1 Explanation of symbols 6
1.2 Important terms 6
1.3 Declaration of conformity 8
2 Safety 9
2.1 Proper use 9
2.2 Foreseeable misuse 10
2.3 Competent persons. 10
2.4 Disclaimer 11
2.5 Laser safety notices - Laser class 1 11
2.6 Laser safety notices - Laser class 2 12
3 The different sensor types 16
3.1 ODSL 9 with triangulation measurement 16
3.2 ODS... 96B with triangulation measurement 17
3.3 ODSL/ODKL/ODSIL 96B with time-of-flight measurement 17
4 Description ODSL 9 18
4.1 General description 18
4.2 Typical areas of application for the ODSL 9 19
4.3 ODSL 9 variants 21
4.3.1 Type code 21
4.4 ODSL 9/C or /V with analog output 22
4.5 ODSL 9/L with IO-Link interface 24
4.5.1 IO-Link process and service data 24
4.5.2 IO-Link system commands and diagnostics (observation) 25
4.6 ODSL 9/D with serial interface 26
4.6.1 Measurement value output for various transmission types 26
4.6.2 Commands for remote control operation 28
4.6.3 Termination of the data lines of the ODSL 9/D3 30
4.6.4 Operation on the fieldbus and the Ethernet 31
4.7 ODSL 9/66 with two switching outputs 32
5 Description ODS... 96B/ODK... 96B 33
5.1 General description 33
5.2 Typical areas of application for the ODS... 96B/ODK... 96B 35
5.3 ODS... 96B/ODK... 96B variants 41
5.3.1 Part number code 42
5.4 ODS... 96B/ODK... 96B M/C and M/V with analog output 43
5.5 ODS... 96B/ODK... 96B M/L with IO-Link interface 47
5.5.1 IO-Link process and service data 47
5.5.2 IO-Link system commands and diagnostics (observation) 48
5.6 ODS... 96B/ODK... 96B M/D with serial interface 49
5.6.1 Measurement value output for various transmission types 49
5.6.2 Commands for remote control operation 50
5.6.3 Termination of the data lines of the OD... 96B/D3 53
5.6.4 Operation on the fieldbus and the Ethernet 54
5.7 ODS... 96B/ODK...96B M/66 with two switching outputs 55
6 Installation 56
6.1 Storage and transport 56
6.2 Mounting 56
7 Operation 59
7.1 Indicator and operating elements 59
7.1.1 LED status displays 60
7.1.2 Control buttons 60
7.1.3 Displays 61
7.1.4 Operation/navigation 62
7.1.5 Reset to factory settings 63
7.2 Configuration / menu structure 64
7.2.1 Input 64
7.2.2 Output Q1 65
7.2.3 Output Q2 66
7.2.4 Analog Output 67
7.2.5 Serial 68
7.2.6 Application 69
7.2.7 Settings 72
7.3 Configuration example - lower switching point 74
7.4 Teach-in 75
7.4.1 Setting the teach point 75
7.4.2 Teach-in for triangulation sensors 76
7.4.3 Teach-in for time-of-flight sensors 78
7.5 Trigger 79
7.6 Measurement modes 79
7.7 Measure filter 80
7.8 Distance calibration 81
7.8.1 Preset or Offset 81
7.8.2 Referencing for triangulation sensors 83
7.8.3 Teach-in of Offset and Preset via the binary input 83
8 Configuration software 85
8.1 Connecting to a PC 85
8.2 Installing the configuration software 86
8.3 Starting the program 86
8.4 ODS configuration software main window 88
8.5 Configuration window. 90
8.5.1 Description of the command buttons 91
9 Specifications ODSL 9 92
9.1 Optical data and certifications 92
9.2 Electrical data, installation data 93
9.3 Dimensioned and connection drawings 94
10 Specifications ODS... 96B/ODK... 96B 97
10.1 Optical data and certifications for triangulation sensors 97
10.2 Optical data and certifications for time-of-flight sensors 99
10.3 Electrical data, installation data: triangulation sensors 100
10.4 Electrical data, installation data: time-of-flight sensors 101
10.5 Dimensioned and connection drawings 102
11 Type overview and accessories 108
11.1 ODSL 9 type overview 108
11.2 ODS... 96B/ODK... 96B type overview 110
11.2.1 Triangulation sensors 110
11.2.2 Time-of-flight sensors 112
11.3 Accessory connection cables and connectors for ODSL 9/OD...96B 113
11.4 Accessory mounting systems for ODSL 9/OD... 96B 114
11.5 Additional accessories for ODSL 9/OD... 96B 115
Bild 2.1: Laser exit openings, Laser warning signs 13
Bild 2.2: Laser warning and information signs - supplied stick-on labels 14
Bild 2.3: Laser warning and information signs - supplied stick-on labels 15
Bild 4.1: Indicator and operating elements of the ODSL 9 18
Bild 4.2: Application example: wood width measurement with the ODSL 9 19
Bild 4.3: Application example: installation check with the ODSL 9. 20
Bild 4.4: Behavior of the ODSL 9 analog output (factory setting) 22
Bild 4.5: \quad Serial transmission formats ODSL 9 27
Bild 4.6: Voltage divider for the RS 485 bus termination 30
Bild 4.7: Behavior of the switching outputs ODSL 9/66 32
Bild 5.1: Display and operational controls ODS... 96B/ODK... 96B 34
Bild 5.2: Application example: fill level measurement with ODS 96B (TRI) 35
Bild 5.3: Application example: stack height measurement with ODSL 96B (TRI) 36
Bild 5.4: Application example: robot arm positioning with ODSL 96B "S" (TRI) 37
Bild 5.5: Application example: lateral stack positioning with ODSL 96B "XL" (TRI) 38
Bild 5.6: Application example: slack control for material on drums with ODSL $96 B$ (TOF) 39
Bild 5.7: Application example: positioning of side-tracking skates with ODKL 96 B (TOF) 40
Bild 5.8: Behavior of the ODS(R) 96B M/C and M/V analog output (factory setting) 43
Bild 5.9: Behavior of the analog output on the triangulation laser model (factory setting) 44
Bild 5.10: Behavior of analog output of the time-of-flight laser model (factory setting) 45
Bild 5.11: ODS... 96B/ODK...96B M/D serial transmission formats 50
Bild 5.12: Voltage divider for the RS 485 bus termination 53
Bild 5.13: Behavior of the switching outputs ODS... 96B/ODK... 96B M/66 55
Bild 6.1: Preferred direction of entry of the objects when using triangulation sensors 57
Bild 6.2: \quad Preferred mounting of triangulation sensors for structured surfaces. 57
Bild 6.3: View through a chase. 57
Bild 6.4: Alignment to measurement objects with reflecting surfaces 58
Bild 7.1: Indicator and operating elements 59
Tabelle 7.1: LED function indicator 60
Tabelle 7.2: Input menu 64
Tabelle 7.3: Menu Output Q1 65
Bild 7.2: Behavior of the switching outputs 65
Tabelle 7.4: Menu Output Q2 66
Tabelle 7.5: Analog Output menu 67
Tabelle 7.6: Serial menu 68
Tabelle 7.7: Application menu 69
Tabelle 7.8: Settings menu 72
Bild 7.3: Teach signal curve for time-of-flight sensors 78
Tabelle 7.11: Effects of the measurement modes for triangulation sensors 79
Tabelle 7.12: Effects of the measurement modes for time-of-flight sensors 79
Tabelle 7.13: Effects of Measure Filter 80
Bild 8.1: \quad Connecting the distance sensor via the UPG 10 configuration adapter 85
Bild 8.2: System variable "devmgr_show_nonpresent_devices" 87
Bild 8.3: COM port properties - connection settings "Advanced" 87
Bild 8.4: ODS configuration software - main window 88
Bild 8.5: ODS configuration software - measurement 89
Bild 8.6: ODS configuration software - configuration window. 90
Bild 9.1: Dimensioned drawing ODSL 9... 94
Bild 9.2: Electrical connection ODSL 9/C6 95
Bild 9.3: Electrical connection ODSL 9/C66 95
Bild 9.4: Electrical connection ODSL 9/V6 95
Bild 9.5: Electrical connection ODSL 9/V66 95
Bild 9.6: Electrical connection ODSL 9/L 96
Bild 9.7: Electrical connection ODSL 9/D26 96
Bild 9.8: Electrical connection ODSL 9/D36 96
Bild 9.9: Electrical connection ODSL 9/66 96
Bild 10.1: Dimensioned drawing ODS 96B..., ODSR 96B. 102
Bild 10.2: Dimensioned drawing triangulation sensors ODSL(R) 96B 103
Bild 10.3: Dimensioned drawing time-of-flight sensors ODSL 96B.../ODKL 96B 104
Bild 10.4: Dimensioned drawing of ODSIL 96B... time-of-flight sensors 105
Bild 10.5: Electrical connection ODS... 96B/ODK... 96B M/C. 106
Bild 10.6: Electrical connection ODS... 96B/ODK... 96B M/C66. 106
Bild 10.7: Electrical connection ODS... 96B/ODK... 96B M/V 106
Bild 10.8: Electrical connection ODS... 96B/ODK... 96B M/L.... 106
Bild 10.9: Electrical connection ODS... 96B/ODK... 96B M/D26. 107
Bild 10.10: Electrical connection ODS... 96B/ODK... 96B M/D36 107
Bild 10.11: Electrical connection ODS... 96B/ODK... 96B M/66 107
Tabelle 11.1: ODSL 9 type overview 108
Tabelle 11.2: Type overview triangulation sensors ODS... 96B 110
Tabelle 11.3: Type overview time-of-flight sensors OD...L 96B 112
Tabelle 11.4: Accessory connection cables and connectors 113
Tabelle 11.5: Accessory mounting systems 114
Tabelle 11.6: Accessories for PC configuration / IO-Link / fieldbus connection 115

1 General information

1.1 Explanation of symbols

The symbols used in this technical description are explained below.

Attention

This symbol precedes text messages which must strictly be observed. Failure to comply with this information results in injuries to personnel or damage to the equipment.

Attention Laser Radiation

This symbol warns of possible danger caused by hazardous laser radiation.

Notice

This symbol indicates text passages containing important information.

Notice

According to their measurement principle, this manual also refers to the sensors in brief as triangulation sensors and as time-of-flight sensors and partly distinguishes them in the text by means of different colors:

- Δ TRI $=$ triangulation sensors
- Ω TOF $=$ time-of-flight sensors

1.2 Important terms

Absolute measurement accuracy

Shows the possible divergence of the measurement value from the anticipated value through changes in the environmental conditions during the measuring process. Accuracy is increased under constant environmental conditions.

Response time

The time period required to obtain stable measurements after change of the reflectivity behavior. In the case of sensors with the time-of-flight measurement principle, the response time equals the measurement time.

Resolution

The smallest possible distance change of the measurement object, which causes a definite change in the output signal. For sensors with triangulation measurement principle, the short range resolution exceeds that at distant range. Objects at short range can be measured with higher accuracy.

Warmup time

Time the sensor needs in order to reach the operating temperature. The warmup time is around 20 min (depending on the sensor type). An optimal measurement is only possible after the end of the warmup time.

Output resolution

The output resolution describes how the measurement values are presented on the display and digital interfaces. The output resolution ($0.01 \mathrm{~mm}, 0.1 \mathrm{~mm}$ or 1 mm) is set for each sensor type and cannot be changed.

Delay before start-up

The delay before start-up indicates the point in time when the first valid measurement can be obtained after switching on.

Insensitivity towards ambient light

Indicates the insensitivity of the measurement result towards ambient light. Sensors with triangulation measurement principle (Δ TRI) also measure reliably with external light interference of 5 kLux (ODS... 96B) or 30 kLux (ODSL 9), while the typical light intensity in the workplaces is only about 1 kLux . Sensors with time-of-flight measurement principle (Ω TOF) feature a significantly higher immunity against external light interference of about 100kLux. The immunity against external light interference of triangulation sensors may be improved significantly via the Ambient Light Suppression mode (abt. 30kLux).

Light switching / Dark switching

Indicates the behavior of the switching output when an object is inside the taught/configured switching distance. At light switching, the switching output is active (high), at dark switching inactive.

Integration time

The integration time for triangulation sensors is comparable to the exposure time for photographic cameras. It is automatically adjusted to the intensity of the reflected light and thus depends on the reflectance factor of the measurement object. It is inversely proportional to the measurement frequency. Triangulation sensors by Leuze electronic automatically adjust themselves for optimum integration time.

Measurement time

The measurement time indicates the time difference between 2 consecutive measurements. For triangulation sensors, the measurement time changes as a result of the adaptation of the integration time in correspondence with the reflectance and the measurement distance.

Diffuse reflection

Return and/or degree of reflection of the radiated light. Please observe the reflectance values in the respective specifications (90% is white, 6% is black). In the case of sensors with the time-of-flight measurement principle, the measurement range depends on the reflectance.

Time of Flight תTOF

Distance measurement procedures that determines the distance of an object via the propagation time of a light pulse emitted by the sensor's transmitter that is reflected by the object and received by the sensor's receiver. For large operating ranges, high immunity against light interference and low influence of gloss and structures on the measurement value.

Triangulation Δ TRI

Distance measuring procedure, which determines the distance of an object by the incidence angle of the light reflected from the object. For short to medium operating ranges, fast measurement rate, high accuracy.

Repeatability

Measuring distance change with repeated measurement at the same output signal (observe the same peripheral conditions as with resolution).

1.3 Declaration of conformity

The optical distance sensors of the ODS.../ODK... series have been manufactured observing current European standards and guidelines.

Notice

A corresponding Declaration of Conformity can be requested from the manufacturer.
The manufacturer of the product, Leuze electronic GmbH + Co. KG in D-73277 Owen, possesses a certified quality assurance system in accordance with ISO 9001.

CDRH

2 Safety

This sensor was developed, manufactured and tested in accordance with the applicable safety standards. It corresponds to the state of the art.

2.1 Proper use

The ODS... distance sensors are optical electronic sensors for the optical, contactless measurement of distance to objects.

Areas of application

The optical distance sensors of the ODS... series have been designed for the following areas of application:

- distance measurement
- contour determination
- thickness measurement
- positioning
- filling level measurement
- diameter determination
- sag determination and much more.

CAUTION

Operate in accordance with intended use.
$\stackrel{4}{4}$ Only operate the device in accordance with its intended use.
The protection of personnel and the device cannot be guaranteed if the device is operated in a manner not corresponding to its intended use.
Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable for damages caused by improper use.
${ }^{4}$) Read the technical description before commissioning the device.
Knowledge of this technical description is an element of proper use.

NOTICE

Comply with conditions and regulations!

$\stackrel{\Perp}{ }{ }^{4}$ Observe the locally applicable legal regulations and the rules of the employer's liability insurance association.

OPERATION NOTICE IN ACCORDANCE WITH UL CERTIFICATION:
 CAUTION - Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous light exposure.
 ATTENTION ! Si d'autres dispositifs d'alignement que ceux préconisés ici sont utilisés ou s'il est procédé autrement qu'indiqué, cela peut entraîner une exposition à des rayonnements et un danger pour les personnes.

Attention

For UL applications, use is only permitted in class 2 circuits in accordance with the NEC (National Electric Code).

2.2 Foreseeable misuse

Any use other than that defined under the "Approved purpose" or which goes beyond that use is considered improper use.
In particular, use of the device is not permitted in the following cases:

- Rooms with explosive atmospheres
- in circuits which are relevant to safety
- Operation for medical purposes

NOTICE

Do not modify or otherwise interfere with the device.
$\stackrel{4}{4}$ Do not carry out modifications or otherwise interfere with the device.
The device must not be tampered with and must not be changed in any way.
The device must not be opened. There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

2.3 Competent persons

Connection, mounting, commissioning and adjustment of the device must only be carried out by competent persons.
Prerequisites for competent persons:

- They have a suitable technical education.
- They are familiar with the rules and regulations for occupational safety and safety at work.
- They are familiar with the technical description of the device.
- They have been instructed by the responsible person on the mounting and operation of the device.

Certified electricians

Electrical work must be carried out by a certified electrician.
Due to their technical training, knowledge and experience as well as their familiarity with relevant standards and regulations, certified electricians are able to perform work on electrical systems and independently detect possible hazards.
In Germany, certified electricians must fulfill the requirements of accident-prevention regulations BGV A3 (e.g. electrician foreman). In other countries, there are respective regulations that must be observed.

2.4 Disclaimer

Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG is not liable in the following cases:

- The device is not being used properly.
- Reasonably foreseeable misuse is not taken into account.
- Mounting and electrical connection are not properly performed.
- Changes (e.g., constructional) are made to the device.

2.5 Laser safety notices - Laser class 1

Valid for: ODSL 9/...C1...
ODSL 96BM/...C1...

ATTENTION, LASER RADIATION - LASER CLASS 1

The device satisfies the requirements of IEC 60825-1:2007 (EN 60825-1:2007) safety regulations for a product in laser class 1 as well as the U.S. 21 CFR 1040.10 regulations with deviations corresponding to "Laser Notice No. 50" from June 24th, 2007.
${ }^{4}$) Adhere to the applicable legal and local regulations regarding protection from laser beams.
${ }_{4}{ }^{4}$ The device must not be tampered with and must not be changed in any way.
There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

Valid for: ODSIL 96BM/...

ATTENTION, VISIBLE AND INVISIBLE LASER RADIATION - LASER CLASS 1

The device satisfies the requirements of IEC 60825-1:2007 (EN 60825-1:2007) safety regulations for a product in laser class 1 as well as the U.S. 21 CFR 1040.10 regulations with deviations corresponding to "Laser Notice No. 50" from June 24th, 2007.
${ }^{4}$) Adhere to the applicable legal and local regulations regarding protection from laser beams.
${ }_{4}{ }^{4}$ The device must not be tampered with and must not be changed in any way.
There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic GmbH + Co. KG.

2.6 Laser safety notices - Laser class 2

Valid for: ODSL 9/... without indicator ...C1... in type designation ODSL 96BM/... without indicator ...C1... in type designation ODSLR 96BM/... without indicator ...C1... in type designation ODKL 96BM/... without indicator ...C1... in type designation

ATTENTION, LASER RADIATION - LASER CLASS 2

Never look directly into the beam!

The device satisfies the requirements of IEC 60825-1:2007 (EN 60825-1:2007) safety regulations for a product in laser class 2 as well as the U.S. 21 CFR 1040.10 regulations with deviations corresponding to "Laser Notice No. 50" from June 24th, 2007.
${ }_{4}$ Never look directly into the laser beam or in the direction of reflecting laser beams!
If you look into the beam path over a longer time period, there is a risk of injury to the retina.
${ }_{4}^{4}$ Do not point the laser beam of the device at persons!
\& Intercept the laser beam with an opaque, non-reflective object if the laser beam is accidentally directed towards a person.
4.) When mounting and aligning the device, avoid reflections of the laser beam off reflective surfaces!
4. CAUTION! Use of controls or adjustments or performance of procedures other than specified herein may result in hazardous light exposure.
${ }^{4}$ Adhere to the applicable legal and local regulations regarding protection from laser beams.
4. The device must not be tampered with and must not be changed in any way.

There are no user-serviceable parts inside the device.
Repairs must only be performed by Leuze electronic $\mathrm{GmbH}+\mathrm{Co}$. KG.

NOTICE

Affix laser information and warning signs!
Laser information and warning signs are affixed to the device (see figure 2.1). In addition, self-adhesive laser information and warning signs (stick-on labels) are supplied in several languages (see figure 2.2 and figure 2.3).
\Leftrightarrow Affix the laser information sheet with the language appropriate for the place of use to the device.
When using the device in the US, use the stick-on label with the "Complies with 21 CFR 1040.10" notice.
$\stackrel{4}{4}$ Affix the laser information and warning signs near the device if no signs are attached to the device (e.g. because the device is too small) or if the attached laser information and warning signs are concealed due to the installation position.
Affix the laser information and warning signs so that they are legible without exposing the reader to the laser radiation of the device or other optical radiation.

A Laser exit opening
B Laser warning sign

Bild 2.1: Laser exit openings, Laser warning signs

ODSL 9 / ODSL(R) 96B laser class 2 , with triangulation measurement Δ TRI

Bild 2.2: Laser warning and information signs - supplied stick-on labels Δ TRI

ODSL/ODKL 96B laser class 2, with time-of-flight measurement principle Ω LOF

Bild 2.3: Laser warning and information signs - supplied stick-on labels \quad LTOF

3 The different sensor types

3.1 ODSL 9 with triangulation measurement Δ TRI

The ODSL 9 is an optical distance sensor that operates according to the triangulation measurement principle. Advantages of the ODSL 9:

- For short to medium operating ranges
- High measurement rate
- Very high accuracy
- Measurement against diffusely reflective objects
- Low temperature influence on the measurement value

Overview of sensor features

- Plastic housing with protection class IP 67
- Dimensions $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 21 \mathrm{~mm}$
- Visible red-light laser
- Operating ranges up to 650 mm
- Measurement time 2 ms
- Yellow LC display (backlit) for measurement value display and sensor configuration
- Configuration via PC software and programming unit
- 2 short-stroke keys for menu navigation
- 2 device LEDs

3.2 ODS... 96B with triangulation measurement Δ TRI

The ODSL 96B is an optical distance sensor that operates according to the triangulation measurement principle. Advantages of the ODS... 96B with triangulation measurement principle:

- For short to medium operating ranges
- High measurement rate
- High accuracy
- Measurement against diffusely reflective objects
- Low temperature influence on the measurement value

Overview of sensor features

- Metal housing with protection class IP 67, IP 69K
- Dimensions $90 \mathrm{~mm} \times 70 \mathrm{~mm} \times 30 \mathrm{~mm}$
- Device models with red-light LED, infrared LED and visible red-light laser
- Operating ranges up to 2000 mm (range specification in the type designation)
- Minimum measurement time 1 ms
- OLED display for measurement value display and sensor configuration
- Configuration via PC software and programming unit
- Labeled key pad with 2 buttons for menu navigation
- 2 device LEDs each at the sensor front and back

3.3 ODSL/ODKL/ODSIL 96B with time-of-flight measurement תTOF

The ODSL/ODKL/ODSIL 96B is an optical distance sensor that operates according to the time-of-flight measurement principle. Advantages of the time-of-flight measurement principle:

- For large ranges
- High immunity against light interference
- Low influence of gloss and structures on the measurement value
- Measurement against diffusely reflective objects (ODSL/ODSIL 96B) or reflective tapes (ODKL 96B)
- Wide area of application

Overview of sensor features

- Metal housing with protection class IP 67, IP 69K
- Dimensions $90 \mathrm{~mm} \times 70 \mathrm{~mm} \times 30 \mathrm{~mm}$
- Device models with infrared-light laser and visible red-light laser
- Operating ranges up to 10 m diffuse or 25 m against high gain foil (no range specification in the type designation)
- Minimum measurement time 1.4 ms
- OLED display for measurement value display and sensor configuration
- Configuration via PC software and programming unit
- Labeled key pad with 2 buttons for menu navigation
- 2 device LEDs each at the sensor front and back

4 Description ODSL 9

4.1 General description

The ODSL 9 is a distance sensor with an extensive area of application. The devices are available as a laser version with analog output or serial output as well as with 1 to 2 switching outputs. The distance measuring device operates on the triangulation principle and uses a CMOS line for evaluating.
Through automatic adjustment of the integration time (exposure time) to the intensity of the objects' reflected light, a high degree of independence from the reflectivity properties of the measurement object is achieved.

An integrated RISC controller facilitates brief measurement times while at the same time providing highly precise measurement values. The high-performance hardware is also able to preprocess measurement data directly in the sensor.

The standard measurement range lies between $50 \ldots 450 \mathrm{~mm}$. One model for greater ranges covers the measurement range from $50 \ldots 650 \mathrm{~mm}$. Both models have an output resolution of 0.1 mm . Higher resolution models are available with a measurement range of $50 \ldots 100 \mathrm{~mm}$ or $50 \ldots 200 \mathrm{~mm}$. Its output resolution is 0.01 mm .

Two short-stroke keys and a backlit LC display are integrated into the device. They allow the ODSL 9 to be configured via a graphical menu. During measurement operation, the display shows the current measurement value. The sensor can be protected against unauthorized operation by password protection.

The configuration software available from www.leuze.com allows configuration of the ODSL 9 products by means of a PC and visualization of the ODSL 9's measurement values. Moreover, stored parameter sets can be duplicated in other distance sensors. The connection is made via the configuration adapter, which is available as an accessory (UPG10).

Bild 4.1: Indicator and operating elements of the ODSL 9

Accessories

The configuration software as well as a UPG 10 configuration adapter are available for configuring the ODSL 9 from a PC.
Mounting systems and connection cables in various lengths and configurations round off the accessories.
Details can be found in chapter 11.

4.2 Typical areas of application for the ODSL 9

Typical areas of application for the ODSL 9 are:

- Positioning of actuators and robots
- Height and width measurement as well as determination of diameter
- Quality assurance in assembly lines
- Contour measurement of moving objects

Laser light spot: $\quad 1 \mathrm{~mm} \times 1 \mathrm{~mm}$
Application examples

Bild 4.2: Application example: wood width measurement with the ODSL 9

Bild 4.3: Application example: installation check with the ODSL 9

Notice
For mounting instructions please refer to chapter 6.2.

4.3 ODSL 9 variants

Model variations

The ODSL 9 is available as a laser distance sensor (red light) . Measurement ranges:
$50 \ldots 100 \mathrm{~mm}$ with absolute measurement accuracy $\pm 0.5 \%$, resolution 0.01 mm
$50 \ldots 200 \mathrm{~mm}$ with absolute measurement accuracy $\pm 0.5 \ldots \pm 1.0 \%$, resolution $0.01 \ldots 0.1 \mathrm{~mm}$
$50 \ldots 450 \mathrm{~mm}$ with absolute measurement accuracy $\pm 1.0 \%$, resolution 0.1 mm
$50 \ldots 650 \mathrm{~mm}$ with absolute measurement accuracy $\pm 1.0 \%$, resolution $0.1 \ldots 0.5 \mathrm{~mm}$

4.3.1 Type code

Use the following table to determine the equipment features of your ODSL 9.

OD SL 9/ V 6.C1-450 -S12			
	Connection type	S12	M12 connector
		100	$50 \ldots 100 \mathrm{~mm}$, High Res., resolution 0.01 mm
	Operating range in	200	$50 \ldots 200 \mathrm{~mm}$, resolution $0.01 \ldots 0.1 \mathrm{~mm}$
	mm ($\boldsymbol{\Delta}$ TRI)	450	$50 \ldots 450 \mathrm{~mm}$, resolution 0.1 mm
		650	$50 \ldots 650 \mathrm{~mm}$, resolution $0.1 \ldots 0.5 \mathrm{~mm}$
	Laser class	.C1	laser class 1
	Laser class	N/A	laser class 2
	Switching output	6	1 push/pull output
		66	2 push/pull outputs
		C	analog current output
		v	analog voltage output
	Measurement data	L	10-Link interface
		D2	serial RS 232 interface
		D3	serial RS 485 interface
	Light source	L	laser
	Target object	S	measurement against diffusely reflective objects
		OD	optical distance sensor

Notice

According to their measurement principle, this manual also refers to the sensors in brief as triangulation sensors and as time-of-flight sensors and partly distinguishes them in the text by means of different colors:

- Δ TRI $=$ triangulation sensors
- Ω TOF $=$ time-of-flight sensors

4.4 ODSL 9/C or /V with analog output

Characteristic output curve of the ODSL 9

Bild 4.4: Behavior of the ODSL 9 analog output (factory setting)

Response of the analog output

The ODSL $9 \mathrm{M} / \mathrm{C}$ or M/V has an analog output with linear behavior inside of the respective measurement range. There is a departure from linearity above and below the linear area. If a signal is present, output values above the maximum ($>20 \mathrm{~mA}$ or $>10 \mathrm{~V}$) or below the minimum ($<4 \mathrm{~mA}$ or $<1 \mathrm{~V}$) specified for the measurement range can still be detected.
For ODSL 9 models with voltage output, it is also possible to set the voltage range of the output.
The analog output can be easily configured using the LC display or via software. In order to achieve the highest resolution possible, the range of the analog output should be set as small as the application allows. The characteristic output curve can be configured with a positive or negative gradient. For this purpose, both distance values Fosition Min. Vol. and Fosition Max. Vol. for the minimum and maximum analog output value are set accordingly, see figure 4.4.
Alternatively, the analog output can also be taught via pin 2 (see chapter "Teach-in of the switching outputs/characteristic output curve (time control)").

Behavior of the switching output

In addition, a switching output is also available with the ODSL $9 \mathrm{M} / \mathrm{C}$ and M / V. The position within the measuring range at which the switching output becomes active can be set arbitrarily via a teach line or via configuration. In addition to the switching point, it is also possible to set the switching hysteresis and switching behavior (light/dark switching) using the shortstroke keys or the configuration software.

Teach-in of the characteristic output curve

In addition to edge-controlled teach-in of the switching outputs (slope control), the ODSL 9 with analog output can also be used to perform a time-controlled teach-in of switching output and characteristic output curve (time control) via the teach line. Both teach events are described in chapter 7.3.

4.5 ODSL 9/L with IO-Link interface

The sensors are equipped with an IO-Link interface for measurement data output. The sensor cyclically transfers a data packet of 2 bytes at a baud rate of 38.4 k (COM2, Frame 2.2, Vers. 1.0) to the IO-Link master module. The sensor has no switching output; the SIO mode is not supported.

The process data and parameters are described in the IODD (IO-Link Device Description). You can download the IODD on the Internet from www.leuze.com.

The ODSL 9/L... can be configured on the PC with a generic IODD interpreter. To do this, the PC is connected to the PC via an IO-Link master.

4.5.1 IO-Link process and service data

IO-Link process data

Output data device

16 bit measurement value: distance
1 bit output resolution: $\quad 0.01 \mathrm{~mm} / 0.1 \mathrm{~mm}$ (type dependent)
Signal too weak: 65535
Laser error: 65533

IO-Link service data

Sensors with IO-Link interface can be configured and diagnosed via the service data.

Measure mode parameter

With this parameter, a measure mode can be activated for adapting to the application task. There are four measurement modes (Standard, Precision, Speed and Light Suppression) to choose from.

Measure filter parameter

With this parameter, a measurement value filter can be activated for adapting to the application task. Three options are available (Off, Averaging and Center Value).

Notice

Detailed information on the parameters can be found in chapter 7 .

4.5.2 IO-Link system commands and diagnostics (observation)

System commands

Laser transmitter activation

This system command switches on the laser transmitter.

Laser transmitter deactivation

This system command switches off the laser transmitter.
If the sensor is deactivated, then the most recently determined measurement value is frozen. The state of the laser can be monitored in the sensor state.

Setting to factory setting

This system command restores the factory settings of the sensor.

Diagnostics (observation)

Signal too weak [process value 65535] or laser error [process value 65533]

Reception signal is not sufficient: Either no object is in the measurement range or the signal from the object is too low for measurement. A displayed laser error indicates a laser-light source malfunction.

Signal warning

Low reception signal: The object is not detected reliably, e.g. because the signal from the object is very weak.

Laser activation

Status information on whether the laser transmitter is activated or deactivated.

Measurement range sensor

Status information on whether an object is located in the measurement range of the sensor.

Notice

If parameters are changed on the device via the display and keyboard, it is not signaled to the master. When there is an explicit query by the master, however, the changed value is available.

Notice

Detailed information about the IO-Link service data and the IODD can be found at www.leuze.com.

4.6 ODSL 9/D with serial interface

The ODSL 9/D... sensors are equipped with one switching output and one serial interface, which is implemented either as an RS 232 interface (ODSL 9/D2...) or as an RS 485 interface (ODSL 9/D3...).
The transmission rate can be set to between 9,600 and 57,600 baud.
Serial transmission is performed with 1 start bit, 8 data bits and 1 stop bit without parity.
For the transmission of the measurement values, 4 different transmission modes may be configured (see figure 4.5):

- ASCII measurement value (6 bytes)
- 14-bit measurement value (2 bytes, ODS 96 compatible)
- 16-bit measurement value (3 bytes, ODSL 30 compatible)
- Remote control operation

4.6.1 Measurement value output for various transmission types

Object distance	Measurement value output
No evaluable receive signal	65535 (signal too weak)
< Measurement range	Distance value (undefined linearity)
Within measurement range	Distance value linear
$>$ Measurement range	Distance value (undefined linearity)
Device error	65333 (laser error)

Bild 4.5: Serial transmission formats ODSL 9

4.6.2 Commands for remote control operation

For remote-control operation (Serial -> Com Function -> Remote control), a device address can be set between 0 and 14 (Serial -> Hode Address).
In this operating mode, the ODSL 9/D only responds to commands from the control. The following control commands are available:

Measurement value query, 4 digits:

					te no.					Response
	0	1	2	3	4	5	6	7	8	
Command	Sensor address 0×00 through 0x0E	-	-	-	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \\ \hline \end{gathered}$	ASCII address tens ones		ASCII distance measurement value			value ones	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	max. 15 ms

Measurement value query, 5 digits:

	Byte no.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " \star \text { " } \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9", "A...D"	$\begin{gathered} \text { "M" } \\ (0 \times 4 D) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9", "A...D"	$\begin{array}{r} \text { AS } \\ 10^{\prime} 000 \text { 's } \end{array}$		measu 100's	ent v tens	ones	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	max. 15 ms

Execute referencing function:

| | Byte no. | | | | | | | | Response |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | | | | | | | | | |

Detailed information on referencing can be found in chapter 7.8.2

Execute preset measurement:

| | Byte no. | | | | | | | | Response |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | | | | | | | | | |$|$

Detailed information on Preset/Offset can be found in chapter 7.8.1
Activate sensor:

					no.					Response
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "A....D"	$\begin{gathered} \text { "A" } \\ (0 \times 41) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	ASCII address "O....9",	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	$\max .$ $15 \mathrm{~ms}$

Deactivate sensor:

	Byte no.									Response
time										

Status byte (bitwise processing):

Bit number	
$7(\mathrm{MSB})$	always $=0$ (reserved)
6	$1=$ other error (e.g. no measurement possible or referencing / preset not successful), $0=$ OK
5	always $=1$
4	always $=0$ (reserved)
3	always $=0$ (reserved)
2	$1=$ sensor deactivated, $0=$ sensor activated
1	$1=$ no signal or signal too low, $0=$ signal OK
$0($ LSB $)$	$1=$ laser interference, $0=$ Laser OK

4.6.3 Termination of the data lines of the ODSL 9/D3...

The ODSL 9/D3... features a combined transmitter and receiver component that can transmit serial data according to the RS 485 and RS 422 standard (see TIA/EIA-485-A or DIN66259, Part 3).

These standards define some basic rules that should be followed in order to achieve the most reliable data transmission:

- The data lines A and B (which correspond to the ODSL 9 pins Tx+ and Tx-) are connected to an intrinsic impedance of $Z_{0} \approx 120 \Omega$ via a 2 -wire twisted pair cable.
- The end of the data line (and the beginning in case of RS 485) is terminated using a 120Ω resistor. The ODSL 9/D3... does not have an internal bus termination.
- The RS 485 bus participants are wired in an in-line bus topology, i.e., the data line is fed from one bus participant to the next. Cable stubs are to be avoided or to be kept as short as possible.
- The RS 485 specification assumes an inactive potential difference of $U_{A B} \geq 200 \mathrm{mV}$ between the data lines. A bus termination in the form of a voltage divider should be implemented in order to maintain this level. Usually, it is connected to the RS 485 coupling module of the PLC.

The RS 485 specification permits transmission rates in the megabit range for up to 32 participants. The ODSL 9/D3... is designed for a data transmission rate of typically 9600 baud ($9600 \ldots 57600$ baud may be configured). In practice, this means that the strict requirements regarding the bus termination and the cabling are "softened" for a few bus participants.

However, it is important to maintain the bus idle levels ($\mathrm{U}_{\mathrm{AB}} \geq 200 \mathrm{mV}$). If the PLC coupling module does not include a bus termination with voltage divider, the following circuit may be used.

Bild 4.6: Voltage divider for the RS 485 bus termination
The RS 422 connection does not require a bus termination for cable lengths up to about 20 m and data transmission rates less than 9600 Baud.

Further information:

- RS 422: Electrical Specification acc. to DIN 66259, Part 3
- ISO 8482: Abstract

Specifies the physical medium characteristics for twisted pair multipoint interconnections in either 2-wire or 4-wire network topology, a binary and bi-directional signal transfer, the electrical and mechanical design of the endpoint system branch cables and the common trunk cable which may be up to 1200 m in length, the component measurements of the integrated type generators and receivers within the endpoint system, the applicable data signaling rate up to $12.5 \mathrm{Mbit} / \mathrm{s}$.

4.6.4 Operation on the fieldbus and the Ethernet

ODSL 9/D2 sensors... with an RS 232 serial interface can be connected with MA 2xxi modular interfacing units to the following fieldbus and Ethernet types:

- PROFIBUS DP \rightarrow MA 204i
- Ethernet TCP/IP \quad-> MA 208i
- CANopen \rightarrow MA 235i
- EtherCAT \rightarrow MA 238i
- PROFINET-IO \rightarrow MA 248i
- DeviceNet $\rightarrow>$ MA 255i
- EtherNet/IP \rightarrow MA 258i

To do this, the modular interfacing unit is connected to the sensor via a connection cable. To operate the distance sensors, rotary switch $\mathbf{S} 4$ of the modular interfacing unit must be set to switch position B.
Further details can be found in the technical descriptions of the modular interfacing units.

Notice

The default settings of the ODS serial interface have to be adjusted. Further information on configuration of the interface can be found in the technical description of the corresponding device.

Specifications for the serial interface

COM function: ASCII
Baud rate: $\quad 38400$ baud
The ODSL 9/D2... is to be operated in the "Precision" measure mode. The mode is set through the display menu via AFFlication -> Meosure mode -> Precision (see chapter 7.2.6).

4.7 ODSL 9/66 with two switching outputs

Bild 4.7: Behavior of the switching outputs ODSL 9/66
The two switching outputs of the ODSL 9/66 work independently of each other. Upper and lower switching points as well as hysteresis can be set separately for both switching outputs via the LC display or the configuration software.
Via the teach input, either the upper or the lower measurement range limit can be taught for both switching outputs or, alternatively, the center of the switching range. A common teach line is available for both switching outputs. An exact description of the teach event can be found in chapter 7.3.

5 Description ODS... 96B/ODK... 96B

5.1 General description

The ODS... 96B/ODK... 96B is a distance sensor with a large area of application. The devices are available as LED or laser version with analog or serial output. Two different measurement principles are applied:

Measurement principle: Triangulation Δ TRI

When using the triangulation measuring procedure, the distance of an object is determined via the angle of incidence of the light reflected by the object. For the actual measurement, a linear CMOS array is used. The measurement principle is suitable for medium operating ranges and permits a fast measurement rate and high accuracy.

Through automatic adjustment of the integration time (exposure time) to the intensity of the objects' reflected light, a high degree of independence from the reflectivity properties of the measurement object is achieved. In case of low reflectivity (dark objects) a longer measurement time results. The sensor sets the measurement time automatically.

The measurement range extends from 60-2,000mm (depending on sensor model).

Measurement principle: time-of-flight תTOF

In the time-of-flight measurement procedure, the distance of an object is determined via the propagation time of a light pulse emitted by the sensor's transmitter that is reflected by the object and received by the sensor's receiver. The measurement principle is suitable for large operating ranges with simultaneous immunity to light interference and a low influence of gloss and structures on the measurement value. The measurement time can be adjusted via the configuration software or via membrane keyboard and OLED display. It remains fixed.
The measurement range extends from 300-25,000mm (depending on sensor model).

Notice

The type designation indicates which measurement principle your sensor uses:

- Sensors with triangulation measurement principle include an operating range specification in the type designation. Example: ODSL 96B M/C6-2000-S12.
- Sensors with time-of-flight measurement principle do not include an operating range specification in the type designation. Example: ODSL 96B M/C6-S12.

According to their measurement principle, the sensors are in the following also referred to in brief as triangulation sensors and as time-of-flight sensors and are partly distinguished in the text by means of different colors:

- Δ TRI $=$ triangulation sensors
- - TOF $=$ time-of-flight sensors

All device models feature an integrated RISC controller for brief measurement times with simultaneous high precision measurement values. The high-performance hardware is also able to preprocess measurement data directly in the sensor.
A key pad and an OLED display are integrated into the device, which allow the ODS... 96B/ ODK... 96B to be configured via a graphical menu. During measurement operation, the display shows the current measurement value. A lockable cover on the back of the ODS... 96B/ODK... 96B and password protection safeguard the sensor against unauthorized operation.
The configuration software available from www.leuze.com allows configuration of the ODS... 96B/ODK... 96B sensors with a PC and visualization of the measured values. Moreover, stored parameter sets can be duplicated in other distance sensors. The connection is made via the configuration adapter, which is available as an accessory (UPG10).

Bild 5.1: Display and operational controls ODS... 96B/ODK... 96B

Accessories

A configuration software as well as a UPG 10 configuration adapter are available for configuring the ODS... 96B/ODK... 96B from a PC.
The housing dimensions of the ODS... 96B/ODK... 96B distance sensors are identical to those of the sensors of the 96 series from Leuze electronic. In particular, the mounting accessories of the 96 series can be used for the ODS... 96B/ODK... 96B.
For ODKL 96B sensors, a special high-gain reflective tape is available.
Mounting systems and connection cables in various lengths and configurations round off the accessories.
Details can be found in chapter 11.

5.2 Typical areas of application for the ODS... 96B/ODK... 96B

Due to the high number of sensor models and light spot geometries, the ODS... 96B/ ODK... 96B is suitable for nearly all areas of application.

Notice
For mounting instructions please refer to chapter 6.2.

ODS 96B with infrared or red-light LED, measurement range 100 . 1400 mm (Δ TRI):

- Measurement on large surface objects, e.g., bulk material, material on drums, sheet material
- brightVision ${ }^{\circledR}$ - very bright light spot with LED red light

LED light spot:
Output resolution:
$15 \mathrm{~mm} \times 15 \mathrm{~mm}$

Application example

Bild 5.2: Application example: fill level measurement with ODS 96B (TRI)

ODSL 96B with laser, measurement range $60 \ldots 2000 \mathrm{~mm}$ (Δ TRI):

- Measurement in millisecond cycles for large operating ranges
- Stable and precise measurement values, even at varying temperatures and object variations

Laser light spot:
Output resolution:
$2 \mathrm{~mm} \times 6 \mathrm{~mm}$
1 mm

Application example

Bild 5.3: Application example: stack height measurement with ODSL 96B (TRI)

ODSL 96B "S" with laser, measurement range $150 \ldots 800 \mathrm{~mm}$ (Δ TRI):

- Small laser light spot for the precise measurement onto small objects, metallic surfaces or objects with color structures

| Laser light spot: | $1 \mathrm{~mm} \times 1 \mathrm{~mm}$ |
| :--- | :--- | :--- |
| Output resolution: | 0.1 mm |

Application example

Bild 5.4: Application example: robot arm positioning with ODSL 96B "S" (TRI)

ODSL 96B "XL" with laser, measurement range $150 \ldots 1200 \mathrm{~mm}$ (Δ TRI):

- Elongated light spot for precise measurement on perforated or porous objects (e.g., corrugated cardboard), and on objects that are not precisely aligned

Laser light spot:
$15 \mathrm{~mm} \times 4 \mathrm{~mm}$ (at 800 mm distance)
Output resolution:
0.1 mm

Application example

Bild 5.5: Application example: lateral stack positioning with ODSL 96B "XL" (TRI)

ODSL 96B with red-light laser for measurement on objects, measurement range $0.3 \ldots 10 \mathrm{~m}$ (Ω TOF):

- Large operating range, even for dark objects
- Operating modes for fast or precise measurement

Laser light spot: $\quad 7 \mathrm{~mm} \times 7 \mathrm{~mm}$ (at 10 m distance) Output resolution: 1 mm
 ODSL 96B with infrared-light laser for measurement on objects, measurement range $0.3 \ldots 10 \mathrm{~m}$ (Ω TOF):

- Improved measurement behavior on dark objects
- Invisible measurement beam, no influence by people
- Integrated red-light laser alignment aid

Laser light spot:	$7 \mathrm{~mm} \times 7 \mathrm{~mm}$ (at 10m distance)
Output resolution:	1 mm

Application example

Bild 5.6: Application example: slack control for material on drums with ODSL 96B (TOF)

ODKL 96B with laser for measuring on reflective tape, measurement range 0.3 ... 25 m (Ω TOF):

- Fast and easy alignment due to well visible laser light spot
- Large operating range in compact design

Laser light spot: $\quad 7 \mathrm{~mm} \times 7 \mathrm{~mm}$ (at 10 m distance)
Output resolution:
1 mm

Application example

Bild 5.7: Application example: positioning of side-tracking skates with ODKL 96B (TOF)

5.3 ODS... 96B/ODK... 96B variants

Model variations

Five different base variants of the ODS... 96B/ODK... 96B are available:

- as infrared distance sensor ODS 96B
measurement ranges: $100 \ldots 600 \mathrm{~mm} \Delta$ TRI
$120 \ldots 1400 \mathrm{~mm} \Delta$ TRI
- as red-light distance sensor ODSR 96B measurement range: $100 \ldots 600 \mathrm{~mm} \Delta$ TRI
- as laser distance sensor (red light) ODSL(R) 96B for measurement against diffusely reflective objects measurement ranges: $150 \ldots 800 \mathrm{~mm} \Delta$ TRI (laser, "S" light spot)
$150 \ldots 1200 \mathrm{~mm} \Delta$ TRI (laser, "XL" light spot)
$60 \ldots 2000 \mathrm{~mm} \Delta$ TRI (laser + red-light LED)
$150 \ldots 2000 \mathrm{~mm} \Delta$ TRI (laser)
$300 \ldots 10,000 \mathrm{~mm} \Omega$ TOF (laser)
- as laser distance sensor (infrared light) ODSIL 96B for measurement against diffusely reflective objects
measurement range: $\quad 300 \ldots 10,000 \mathrm{~mm} \Omega \mathrm{TOF}$ (laser)
- as laser distance sensor (red light) ODKL 96B for measurement against high-gain reflective tape measurement range: $\quad 300 \ldots 25,000 \mathrm{~mm} \Omega$ TOF (laser against reflective tape)

5.3.1 Part number code

Use the following table to find out the equipment features.

5.4 ODS... 96B/ODK... 96B M/C and M/V with analog output

Characteristic output curve of red light/ infrared models

Bild 5.8: Behavior of the ODS(R) 96B M/C and M/V analog output (factory setting)

Characteristic output curve of the triangulation laser model Δ TRI

Bild 5.9: Behavior of the analog output on the triangulation laser model (factory setting)

Characteristic output curve of the time-of-flight laser model 』TOF

Bild 5.10: Behavior of analog output of the time-of-flight laser model (factory setting)

Response of the analog output

The ODS... 96B/ODK... 96B M/C or M/V has an analog output with linear behavior inside of the respective measurement range. There is a departure from linearity above and below the linear area. If a signal is present, output values above the maximum ($>20 \mathrm{~mA}$ or $>10 \mathrm{~V}$) or below the minimum ($<4 \mathrm{~mA}$ or $<1 \mathrm{~V}$) specified for the measurement range can still be detected.

For the models with voltage output, it is also possible to set the voltage range of the output. The analog output can be easily configured using the OLED display or via software. In order to achieve the highest resolution possible, the range of the analog output should be set as small as the application allows. The characteristic output curve can be configured with a positive or negative gradient. For this purpose, the two distance values Fosition Min. Val. and Fosition Mox. Vol. are set appropriately for the minimum and maximum analog output values, see figure 5.8, figure 5.9 and figure 5.10.
Alternatively, the analog output can also be taught via pin 2 (see chapter 7.3 "Configuration example - lower switching point").

Behavior of the switching output

In addition, a switching output is also available with the ODS... 96B/ODK... 96B M/C and M/ V . The position within the measuring range at which the switching output becomes active can be set arbitrarily via a teach line or via configuration. In addition to the switching point, it is also possible to set the switching hysteresis and switching behavior (light/dark switching) using the key pad or the configuration software.

Teach-in of the characteristic output curve

There are different teach methods depending on the device model (Δ TRI or Ω TOF):

- Δ TRI:

In addition to edge-controlled teach-in of the switching outputs (slope control), the ODS... 96B with analog output can also be used to perform a time-controlled teachin of switching output and characteristic output curve (time control) via the teach line. Both teach events are described in chapter 7.4.2.

- 几TOF:

For the ODS... 96B with time-of-flight measurement principle, there is only a timecontrolled teach model. The time intervals for the individual teach functions are, however, considerably different to those of the triangulation sensors. This teach event is described in chapter 7.4.3.

5.5 ODS... 96B/ODK... 96B M/L with IO-Link interface

The sensors are equipped with an IO-Link interface for measurement data output. The sensor cyclically transfers a data packet of 2 bytes at a baud rate of 38.4 k (COM2, Frame 2.2, Vers. 1.0) to the IO-Link master module. The sensor has no switching output; the SIO mode is not supported.

The process data and parameters are described in the IODD (IO-Link Device Description). You can download the IODD on the Internet from www.leuze.com.

The ODS... 96B/ODK... 96B M/L can be configured on the PC with a generic IODD interpreter. To do this, the PC is connected to the PC via an IO-Link master.

5.5.1 IO-Link process and service data

IO-Link process data

Output data device

16 bit measurement value: distance
1 bit output resolution: 1 mm
Signal too weak: 65535
Signal error: 65534
Laser error: 65533

IO-Link service data

Sensors with IO-Link interface can be configured and diagnosed via the service data.

Measure mode parameter

With this parameter, a measure mode can be activated for adapting to the application task. There are four measurement modes (Standard, Precision, Speed and Light Suppression) to choose from.

Measure filter parameter

With this parameter, a measurement value filter can be activated for adapting to the application task. Three options are available (Off, Averaging and Center Value).

Notice

Detailed information on the parameters can be found in chapter 7.

5.5.2 IO-Link system commands and diagnostics (observation)

System commands

Laser transmitter activation

This system command switches on the laser transmitter.

Laser transmitter deactivation

This system command switches off the laser transmitter.
If the sensor is deactivated, then the most recently determined measurement value is frozen. The state of the laser can be monitored in the sensor state.

Setting to factory setting

This system command restores the factory settings of the sensor.

Diagnostics (observation)

Signal too weak [process value 65535], signal error [process value 65534] or laser error [process value 65533]
Reception signal is not sufficient: either no object is in the measurement range or the signal from the object is too low for measurement. A permanently displayed signal error indicates that the sensor has a defect. A displayed laser error indicates a laser-light source malfunction.

Signal warning

Low reception signal: the object is not detected reliably, e.g. because the signal from the object is very weak.

Laser activation

Status information on whether the laser transmitter is activated or deactivated.

Measurement range sensor

Status information on whether an object is located in the measurement range of the sensor.

Notice

If parameters are changed on the device via the display and keyboard, it is not signaled to the master. When there is an explicit query by the master, however, the changed value is available.

Notice

Detailed information about the IO-Link service data and the IODD can be found at www.leuze.com.

5.6 ODS... 96B/ODK... 96B M/D with serial interface

The sensors are equipped with one switching output and one serial interface, which is implemented either as an RS 232 interface or as an RS 485 interface. The transmission rate can be set to between 9,600 and 57,600 baud.
Serial transmission is performed with 1 start bit, $\mathbf{8}$ data bits and 1 stop bit without parity.
For the transmission of the measurement values, 4 different transmission modes may be configured (see figure 4.5):

- ASCII measurement value

 (6 bytes)- 14-bit measurement value (2 bytes, ODS 96 compatible)
- 16-bit measurement value (3 bytes, ODSL 30 compatible)
- Remote control operation

5.6.1 Measurement value output for various transmission types

Object distance	Measurement value output
No evaluable receive signal	65535 (signal too weak)
< Measurement range	Distance value
(undefined linearity)	
Within measurement range	Distance value
	linear
Measurement range	Distance value
	(undefined linearity)
Device error	65334 (signal error)
	65333 (laser error)

Bild 5.11:ODS... 96B/ODK...96B M/D serial transmission formats

5.6.2 Commands for remote control operation

For remote-control operation (Serial -> Com Function -> Remote control), a device address can be set between 0 and 14 (Serial -> Hode Address).
In this operating mode, the ODS 96B M/D only responds to commands from the control. The following control commands are available:

Measurement value query, 4 digits:

	Byte no.									Response time
	0	1	2	3	4	5	6	7	8	
Command	Sensor address 0×00 through 0x0E	-	-	-	-	-	-	-	-	
Sensor response	$\begin{gathered} " \star " \\ (0 \times 2 A) \\ \hline \end{gathered}$	ASC tens	dress ones	$\begin{gathered} \text { ASCII } \\ \text { 1'000's } \end{gathered}$	$\begin{gathered} \text { tance r } \\ 100 \text { 's } \end{gathered}$		value ones	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	max. 15 ms

Measurement value query, 5 digits:

	Byte no.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	$\begin{gathered} \text { "M" } \\ (0 \times 4 \mathrm{D}) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address "0...9", "A...D"	$\begin{array}{r} \mathrm{AS} \\ 10^{\prime} 000 \text { 's } \end{array}$		measu 100's	ment tens	ones	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	max. 15 ms

Execute the referencing function (only for Δ TRI):

	Byte no.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{aligned} & \text { ASCII } \\ & \text { address } \\ & \text { "0...9", } \\ & \text { "A...D" } \end{aligned}$	$\begin{gathered} \text { "R" } \\ (0 \times 52) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{aligned} & \text { ASCII } \\ & \text { address } \\ & \text { "0...9", } \\ & \text { "A...D" } \end{aligned}$	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	$\begin{gathered} \max . \\ 2 \mathrm{~s} \end{gathered}$

Detailed information on referencing can be found in chapter 7.8.2

Execute preset measurement:

	Byte no.									Response time
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$	$\begin{aligned} & \text { ASCII } \\ & \text { address } \\ & \text { "0...9", } \\ & \text { "A...D" } \end{aligned}$	$\begin{gathered} \text { "P" } \\ (0 \times 52) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	$\begin{gathered} \text { ASCII } \\ \text { address } \\ \text { "0...9", } \\ \text { "A...D" } \end{gathered}$	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	$\begin{gathered} \max . \\ 2 \mathrm{~s} \end{gathered}$

Detailed information on Preset/Offset can be found in chapter 7.8.1

Activate sensor:

	Byte no.									Response
time										

Deactivate sensor:

	Byte no.									Response
	0	1	2	3	4	5	6	7	8	
Command	$\begin{gathered} " \star " \\ (0 \times 2 A) \end{gathered}$		$\begin{gathered} \text { "D" } \\ (0 \times 44) \end{gathered}$	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	
Sensor response	$\begin{gathered} " * " \\ (0 \times 2 A) \end{gathered}$	ASCII address "O...9",	State	$\begin{gathered} \text { "\#" } \\ (0 \times 23) \end{gathered}$	-	-	-	-	-	max. 15 ms

Status byte (bitwise processing):

Bit number	
$7(\mathrm{MSB})$	always $=0$ (reserved)
6	$1=$ other error (e.g. no measurement possible or referencing / preset not successful), $0=$ OK
5	always $=1$
4	always $=0$ (reserved)
3	always $=0$ (reserved)
2	$1=$ sensor deactivated, $0=$ sensor activated
1	$1=$ no signal or signal too low, $0=$ signal OK
$0($ LSB $)$	$1=$ laser interference, $0=$ laser OK

5.6.3 Termination of the data lines of the OD... 96B/D3...

The OD... 96B/D3... features a combined transmitter and receiver component that can transmit serial data according to the RS 485 and RS 422 standard (see TIA/EIA-485-A or DIN66259, Part 3).
These standards define some basic rules that should be followed in order to achieve the most reliable data transmission:

- The data lines A and B (which correspond to the OD... 96B pins Tx+ and Tx-) are connected to an intrinsic impedance of $Z_{0} \approx 120 \Omega$ via a 2-wire twisted pair cable.
- The end of the data line (and the beginning in case of RS 485) is terminated using a 120Ω resistor. The OD... 96B/D3... does not have an internal bus termination.
- The RS 485 bus participants are wired in an in-line bus topology, i.e., the data line is fed from one bus participant to the next. Cable stubs are to be avoided or to be kept as short as possible.
- The RS 485 specification assumes an inactive potential difference of $U_{A B} \geq 200 \mathrm{mV}$ between the data lines. A bus termination in the form of a voltage divider should be implemented in order to maintain this level. Usually, it is connected to the RS 485 coupling module of the PLC.

The RS 485 specification permits transmission rates in the megabit range for up to 32 participants. The OD... 96B/D3... is designed for a data transmission rate of typically 9600 baud ($9600 \ldots 57600$ baud may be configured). In practice, this means that the strict requirements regarding the bus termination and the cabling are "softened" for a few bus participants.

However, it is important to maintain the bus idle levels ($U_{A B} \geq 200 \mathrm{mV}$). If the PLC coupling module does not include a bus termination with voltage divider, the following circuit may be used.
\square
Bild 5.12:Voltage divider for the RS 485 bus termination
The RS 422 connection does not require a bus termination for cable lengths up to about 20 m and data transmission rates less than 9600 Baud.

Further information:

- RS 422: Electrical Specification acc. to DIN 66259, Part 3
- ISO 8482: Abstract

Specifies the physical medium characteristics for twisted pair multipoint interconnections in either 2-wire or 4-wire network topology, a binary and bi-directional signal transfer, the electrical and mechanical design of the endpoint system branch cables and the common trunk cable which may be up to 1200 m in length, the component measurements of the integrated type generators and receivers within the endpoint system, the applicable data signaling rate up to $12.5 \mathrm{Mbit} / \mathrm{s}$.

5.6.4 Operation on the fieldbus and the Ethernet

OD... 96B/D2... sensors with an RS 232 serial interface can be connected with MA 2xxi modular interfacing units to the following fieldbus and Ethernet types:

- PROFIBUS DP \quad MA 204i
- Ethernet TCP/IP \rightarrow MA 208i
- CANopen \rightarrow MA 235i
- EtherCAT \rightarrow MA 238i
- PROFINET-IO -> MA 248i
- DeviceNet \rightarrow MA 255i
- EtherNet/IP \rightarrow MA 258i

To do this, the modular interfacing unit is connected to the sensor via a connection cable. To operate the distance sensors, rotary switch S4 of the modular interfacing unit must be set to switch position B.

Further details can be found in the technical descriptions of the modular interfacing units.

Notice

The default settings of the ODS serial interface have to be adjusted. Further information on configuration of the interface can be found in the technical description of the corresponding device.

Specifications for the serial interface

COM function: ASCII
Baud rate: 38400 baud
The OD... 96B/D2... is to be operated in the "Precision" measure mode. The mode is set through the display menu via AFFlication $->$ Measure mode -> Precision (see chapter 7.2.6).

5.7 ODS... 96B/ODK...96B M/66 with two switching outputs

Bild 5.13:Behavior of the switching outputs ODS... 96B/ODK... 96B M/66
The two switching outputs of the ODS... 96B/ODK... 96B M/66 operate independently of each other. Upper and lower switching points as well as hysteresis can be set separately for both switching outputs via the OLED display or the configuration software.
Via the teach input, either the upper or the lower measurement range limit can be taught for both switching outputs or, alternatively, the center of the switching range. A common teach line is available for both switching outputs. An exact description of the teach event can be found in chapter 7.3.

6 Installation

6.1 Storage and transport

Attention!

When transporting or storing, package the sensor so that it is protected against collision and humidity. Optimum protection is achieved when using the original packaging. Heed the required environmental conditions specified in the technical data.

Unpacking

4) Check the packaging for any damage. If damage is found, notify the post office or shipping agent as well as the supplier.
${ }^{4}$ Check the delivery contents using your order and the delivery papers:

- Delivered quantity
- Device variant and model as indicated on the nameplate
- Laser warning signs
- Technical description

The name plate provides information as to what type of distance sensor your device is.
${ }^{4}$ Save the original packaging for later storage or shipping.
If you have any questions concerning your shipment, please contact your supplier or your local Leuze electronic sales office.
$\stackrel{4}{4}$ Observe the applicable local regulations when disposing of the packaging materials.

6.2 Mounting

Mounting systems are available which have to be ordered separately at Leuze electronic. The order number can be found in chapter 11.3 and chapter 11.4. Apart from this, the drilledthrough holes are suitable for the individual mounting of the ODS, depending on the area in which it is to be used.

Installation

To avoid errors while the object enters the measurement beam, correct entry direction of the objects has to be observed for sensors with triangulation principle (Δ TRI). The following graphics show instructions on the installation:

Preferred direction of entry of the objects when using triangulation sensors

Bild 6.1: Preferred direction of entry of the objects when using triangulation sensors
Preferred mounting of triangulation sensors for structured surfaces

Bild 6.2: Preferred mounting of triangulation sensors for structured surfaces
View through a chase

Bild 6.3: View through a chase
If the distance sensors have to be installed behind a cover, the chase has to have at least the size of the optical glass cover. Otherwise, a correct measurement is not possible or can not be guaranteed.

Alignment to measurement objects with reflecting surfaces

Bild 6.4: Alignment to measurement objects with reflecting surfaces
If the measurement object to be detected has a reflecting surface, a measurement may not be possible depending on the angle in which the light is reflected by the measurement object's surface. The directly reflected part of the transmitted light beam must not be incident on the receiver of the distance sensor. Adjust the angle between the sensor and the measurement object such that the sensor can reliably detect the measurement object.

7 Operation

7.1 Indicator and operating elements

Bild 7.1: Indicator and operating elements
The device LEDs display the operating state. For the ODS... 96B/ODK... 96B, the device LEDs have an identical function on the front and back of the distance sensor. During measurement operation, the dot matrix display shows the distance measurement value.

7.1.1 LED status displays

LED	State	Display during sensor operation
green	continuous light	ready
	flashing	interference
	off	no supply voltage
yellow	continuous light	object inside teach-in measurement range
	off	object outside teach-in measurement range

Tabelle 7.1: LED function indicator
During teach-in, the LED indicator deviates from the information shown in Table 7.1 and varies depending on the selected teach mode. Detailed information on this topic can be found in chapter 7.3.

7.1.2 Control buttons

The LC display and control buttons of the ODSL 9 are always accessible. The OLED display and key pad of the ODS... 96B/ODK... 96B are protected by a screw-down cover.

Notice

For the ODS... 96B/ODK... 96B, safety class II at a rated voltage of 250VAC is only ensured with the cover closed.

The ODS is operated using the $\boldsymbol{\nabla}$ and \longleftarrow buttons, which are located next to the display.

Notice

The ∇ button on sensors of the ODSIL design (TOF sensors with infrared laser) serves to switch on/off the red alignment laser.

Notice

The control buttons of the ODSL 9 are not labeled:

- The upper key corresponds to the $\boldsymbol{\nabla}$ button of the ODS... 96B/ODK... 96B.
- The lower key corresponds to the \downarrow button of the ODS... 96B/ODK... $96 B$.

7.1.3 Displays

The display changes depending on the current operating mode. There are the following two display modes:

- Measure mode
- Menu display

The menu display is accessed by pressing one of the two control buttons.
Operation via the menu is described in chapter 7.2.
After switching on the supply voltage $+\mathrm{U}_{\mathrm{B}}$ and following error-free initialization of the device, the green LED illuminates continuously, the distance sensor is in measure mode.
In measure mode, the current measurement value is displayed in the display, e.g. 255 mm .

Notice

After a warmup time of 20 min., the device has reached the operating temperature required for an optimum measurement.

Status displays in measure mode

In case of a weak reception signal, "Low" appears in the display.

If no object is detected or if the signal is too weak, "No Signal" appears in the display.

No Sianal

If the current measurement value of sensors with analog output exceeds the range for the analog output, an arrow appears on the right next to the measurement value.
An arrow pointing downward indicates that the current measurement value is lower than the lower limit of the analog output.
An arrow pointing upward indicates that the current measurement value is larger than the upper limit of the analog output.

If the laser has been deactivated, then " $\square \mathbf{X}$ " appears in the display

If a distance calibration has been performed, then " +O " or " +R " appear in the display. The "+O" display appears if an offset or preset was activated.

The "+R" display appears if the referencing function has been activated.

Errors at the Q1/Q2 switching outputs are indicated as follows.
Lightning bolt icon with an underlying point:
short-circuit at switching output Q1 or configuration adapter UPG10 connected, but PC not connected.
Lightning bolt icon with underlying bar:
short-circuit at switching output Q2.

A wrench icon with the text "Signal Error" indicates a signal error. A permanently displayed signal error indicates that the sensor has a
 defect.

7.1.4 Operation/navigation

In menu display, the display has two lines. The $\boldsymbol{\nabla}$ and \downarrow buttons both have different functions depending on the operating situation. These functions are represented via icons on the right edge of the display - i.e. to the immediate left of the buttons.
The following situations can occur:

Menu navigation

Infut

Selecting values or selection parameters for editing
OQ UpFer Sw. Ft.

Editing value parameters

∇ changes the edit mode, \mathbb{Z} appears
value was entered, the "new entry" icon initially appears and the check-
mark is not available for selection.

Editing selection parameters

	\checkmark displays the next option for input polarity (Active High +24y)
etive Low dy	

ut Folarite	
ctive Hish +24.	\downarrow saves the new value (Active $\mathrm{High}+24{ }^{\text {a }}$)

 saved)

7.1.5 Reset to factory settings

Press the \downarrow button while switching on the device to reset the configuration of the ODS.../ ODK... to the state upon delivery from the factory.
Press the \downarrow button again to reset all parameters to the factory settings. All settings made previously are permanently lost. Press $\boldsymbol{\nabla}$, and the
 ODS.../ODK... returns to measurement operation without resetting the parameters.
You can also use the menu or the configuration software to reset to factory settings (see chapter 7.2.7).

7.2 Configuration / menu structure

7.2.1 Input

The Input menu only appears if your sensor has a binary input. The function of the input at pin 2 is set in the Input menu.

Tabelle 7.2: Input menu

7.2.2 Output Q1

The Output Q1 menu only appears if your sensor has a binary output Q1. It is used to set the switching behavior of switching output Q1.

Tabelle 7.3: Menu Output Q1

1) You can determine the values for your sensor using the type key on page 21 and the appropriate data in chapter 10.1. For ODSL 96B sensors with time-of-flight measurement principle, the assured measurement range $300 \ldots 6,000 \mathrm{~mm}$ applies ($6 \ldots 90 \%$ diffuse reflection).

The adjustable parameters have the following meaning:

- Light switching: If an object is located between the upper and lower switching point, the switching output is active (high).
- Dark switching: If an object is located between the upper and lower switching point, the switching output is not active (low).
- Hysteresis: Expansion of the switching range for switching off. For switching on, the set switching points remain always valid.

Bild 7.2: Behavior of the switching outputs

7.2.3 Output Q2

The Output Q2 menu only appears if your sensor has a binary output Q2. It is used to set the switching behavior of switching output Q2. The adjustable parameters correspond to those of output Q1.

Tabelle 7.4: Menu Output Q2

1) You can determine the values for your sensor using the type key on page 21 and the appropriate data in chapter 10.1. For ODSL 96B sensors with time-of-flight measurement principle, the assured measurement range $300 \ldots 6,000 \mathrm{~mm}$ applies ($6 \ldots 90 \%$ diffuse reflection).

7.2.4 Analog Output

The Analog Output - menu only appears if your sensor has an analog output. It is used to adjust the characteristic output curve of the analog output.

Tabelle 7.5: Analog Output menu

1) You can determine the values for your sensor using the type key on page 21 and the appropriate data in chapter 10.1. For ODSL 96B sensors with time-of-flight measurement principle, the assured measurement range $300 \ldots 6,000 \mathrm{~mm}$ applies ($6 \ldots 90 \%$ diffuse reflection).

For sensors with voltage output, select the voltage range of the analog output. Then set the distance which corresponds to the lower range limit ($0 \mathrm{~V}, 1 \mathrm{~V}$ or 4 mA) at the analog output and the distance which corresponds to the upper range limit (5 V or 10 V or 20 mA). This lets you spread the characteristic output curve according to your requirements.

It is also possible to invert the working range of the analog output, i.e., the selected value of the lower range limit is larger than that of the upper range limit. This creates a descending characteristic output curve.

Notice

The adjustable working ranges are dependent on the selected device type and must lie within the sensor's measurement range. The check to determine whether the entered values are plausible and valid is performed after the upper and lower limits are entered. Invalid values cannot be saved. You can either change the entered value (\cup) or cancel the entry without saving (\mathbb{V}).

7.2.5 Serial

The Serial - menu only appears if your sensor has a serial interface. It is used to adjust the serial interface parameters.

Level 1
Level 2
Level 3

Tabelle 7.6: Serial menu

7.2.6 Application

In the Application menu, the measurement function of the sensor can be optimized for the given application. Several measure modes, measurement filters and a distance calibration are available for this purpose. Details on the function can be found in chapter 7.6 to chapter 7.8.

Tabelle 7.7: Application menu

Level 2
Measurem: Count

Level 3
Explanation / Notes
Sets the number of measurement values which are read in for the Averose and Center value filters.

For Center Value: selection in steps of 10:

10 measurement values

20 measurement values

30 measurement values

40 measurement values
50 measurement values
For Averrains: Set from
1 ... 99

Sets the filter depth for the Center Value measurement filter. Prevents falsification of the average value by "outliers".

A small number of extreme values are not taken into account.
Some extreme values are not taken into account.
A large number of extreme values are not taken into account.

For the Feak measurement filter, sets the minimum deviation of the measurement values from the previous measurement value ${ }^{2)}$

Medium change in measurement value
Small change in measurement value

Upper limit for the Range measurement filter ${ }^{2)}$

Default

X

01

X

X

Upper limit of meas. range

Tabelle 7.7: Application menu

Tabelle 7.7: Application menu

1) Only for ODSL 96B M/C6.C1S-1500-S12 5012 and ODSL 96B M/V6.C1S-1500-S12 (Δ TRI).
2) Sensors with an IO-Link interface do not have this menu item available.

7.2.7 Settings

In the Settings - menu, information on the ODS can be called up and set in the display.

Tabelle 7.8: Settings menu

Tabelle 7.8: Settings menu

7.3 Configuration example - lower switching point

To illustrate menu operation, we will explain how to set the lower switching point of switching output Q1 to 100 mm as an example
${ }_{4}$ In the measure mode, press a button (once or twice) until the menu appears.
${ }^{4}$ Press \boldsymbol{F}; Outfut. Q1 appears in the top menu line.
$\stackrel{4}{4}$ Press \longleftarrow to select Dutput. Q1.

${ }^{4}$ Press ∇ again; Qi Lower Sh. Pt. appears in the upper menu line.

Press \longleftarrow to set the lower switching point. The first digit of the switching point value is displayed with inverted colors.
${ }^{4}$) Press $\boldsymbol{\nabla}$ as many times as necessary to set the desired value e .
${ }^{\Perp}$ Accept the value by pressing \downarrow; repeat the procedure for all other digits.

After pressing \downarrow for the 4th time, a ∇ appears in the lower right part of the display. The ∇ indicates that the next time \downarrow is pressed, the set value will be accepted. This behavior of the \downarrow button can be changed by repeatedly pressing ∇. A \cup (re-edit value) and a \boxtimes (eject value) then appear in succession.
${ }^{\Perp}$ Once you have completed the setting, accept the value by pressing \downarrow; now, Q1 Louer Sh. Ft. is again displayed with inverted
 colors, and the new value, saved in non-volatile memory, is displayed.
$\stackrel{\leftrightarrow}{\Perp}$ Repeatedly press $\boldsymbol{\nabla}$ until \leftarrow appears in the upper menu line.
${ }^{4}$ Press \longleftarrow to access the next-higher menu level.
(4) Repeatedly press $\boldsymbol{\nabla}$ until \leftarrow Nenu Exit. appears in the upper menu line.
${ }^{\Perp}$ Press \curvearrowleft to exit the menu and return to normal measurement operation.

Notice

The selectable or editable values are shown with inverted text colors (black on light-blue background).
If no button is pressed in the configuration menu within 120 s, the brightness is then reduced. If no button is pressed in the 60 s after that, the device automatically returns to measure mode.
The device can be protected against unintentional changes to the configuration by activating the password function (see table 7.8 on page 72). The password is always set to "165".

7.4 Teach-in

Switching points and characteristic output curves can also be set through teach-in without using the software. The following instructions require that you have familiarized yourself with the operation of the ODS using the control buttons and the display.

7.4.1 Setting the teach point

The settings made via the menu or software for the two values Qi UfFer Sh. Foint and Q1 Lower SH: Foint determine the point which is to be taught (applies in an analogous way for Q2). In the following examples, we will consider an ODS 96B with $100 \ldots 600 \mathrm{~mm}$ measurement range.

Q1 Lower Sw. Point > 100 mm AND Q1 Upper Sw. Point < 600 mm

If both switching points are set to a value $=$ Lower limit of measurement range or Upper limit of measurement range using the menu or software, the difference between the two values defines a switching range. The teach point is the center of the switching range.

Example:

- Q1 Lower Sha Foint $=400 \mathrm{~mm}$
- Qi Uffer Sha Foint $=500 \mathrm{~mm}$
- yields a switching range of 100 mm

The teach point lies in the middle of the switching range. If a distance of e.g. 300 mm is now taught, the Q1 swit-
 ches on at 250 mm and back off at 350 mm .

Q1 Lower Sw. Point $=100 \mathrm{~mm}$ AND Q1 Upper Sw. Point $<600 \mathrm{~mm}$
If the lower switching point is set to the Lower limit of measurement range using the menu or software, the upper switching point is taught.

Example:

- Qi Loher Sh: Foint $=100 \mathrm{~mm}$
- Q1 UfFer Sha Foint $=357 \mathrm{~mm}$

The teach point defines the upper switching point. If a distance of e.g. 300 mm is now taught, the Q1 switches on at 100 mm and back off at 300 mm .

Q1 Lower Sw. Point $>100 \mathrm{~mm}$ AND Q1 Upper Sw. Point $=600 \mathrm{~mm}$
If the upper switching point is set to the Upper limit of measurement range using the menu or software, the lower switching point is taught.

Example:

- Qi Loher Sh. Foint $=225 \mathrm{~mm}$
- Di UfFer Sh: Foint $=600 \mathrm{~mm}$

The teach point defines the lower switching point. If a distance of e.g. 300 mm is now taught, the Q1 switches on at 300 mm and back off at 600 mm .

7.4.2 Teach-in for triangulation sensors Δ TRI

Teach-in of the switching outputs (slope control)

In this teach mode, the teach event is performed in the same way as with the ODS 96.
$\stackrel{4}{ }{ }^{4}$ On the OLED display, activate menu item:
Infut -> Infut. Mode -> Teach slope control
(4) Position the measurement object at the desired distance.

』) Activate the "teach in" input (pin 2) for at least 100 ms (by applying $+U_{B}$ or GND, depending on the setting for Input Polarity, see chapter 7.2.1).

The yellow and green LEDs flash simultaneously during this process.
${ }^{4}$) After that, connect the teach input to GND.
You have now taught in the 1st switching output.
If your device has another switching output which you would like to teach:
${ }^{4}$) Position the measurement object at the second desired distance.
${ }_{4}^{4}$ Reactivate the "teach in" input (pin 2) for $\geq 2 \mathrm{~s}$.
The yellow and green LEDs flash alternately during this process.
${ }^{4}$) After that, connect the teach input to GND.
You have now taught in the 2nd switching output.
The taught switching points are dependent on the settings for the upper and lower switching point, see "Setting the teach point" on page 75.

Teach-in of the switching outputs/characteristic output curve (time control)

In addition to the edge controlled teach-in of the switching output, it is also possible to perform a level-controlled teach-in of switching output and output characteristic curve via the teach line for ODS... 96B devices with analog output. The following steps are necessary for the level-controlled teach-in:

If you have changed the factory setting for teaching under Infut. Mode:
$\stackrel{4}{4}$ On the OLED display, activate menu item:
Infut -> Infut. Wode -> Teach time control
${ }_{4}^{4}$ Position the measurement object at the desired teach distance.

Notice

Please note that the teach distance must lie within the measurement range.
4) Activate the "teach in" input (pin 2) (by applying $+U_{B}$ or GND, depending on the setting for Input Polarity, see chapter 7.2.1).

The duration of the activation of the teach input determines the teach step according to the table shown below. The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach signal	Green LED	Yellow LED
Switching output Q1 Teach point, see chapter 7.4.1	$2 \ldots 4 \mathrm{~s}$	flash synchronously	
Distance value for start of measurement range 1V / 4mA at analog output (pin 5)	$4 \ldots 6 \mathrm{~s}$	continuous light	flashing
Distance value for end of measurement range $10 \mathrm{~V} / 20 \mathrm{~mA}$ at analog output (pin 5)	$6 \ldots 8 \mathrm{~s}$	flashing	continuous light

Table 7.9: LED indicator while teaching the characteristic output curve (time control)
At the end of the given teach event:
${ }^{4}$ Reconnect the teach input to GND.
The menu entries can be used to check that the teach values are properly accepted and to make any changes.
If the teach event is not successful, the following remedy is possible:

- Repeat teach event or
- Disconnect sensor from voltage to restore the old values.

Notice

If the measurement range start is taught to a distance greater than the measurement range end, a declining characteristic output curve is automatically set.

Second switching output for Time Control

Sensors with two switching outputs can also be taught in Time Control mode. The LEDs indicate the respective teach step as follows:

- green and yellow LEDs flash simultaneously: Teach switching output Q1
- green LED is on continuously, yellow LED flashes: Teach switching output Q2

7.4.3 Teach-in for time-of-flight sensors Ω TOF

Teach-in of the switching outputs/characteristic output curve

The following steps are required for time-controlled teach-in of TOF sensors:
If you have changed the factory setting for teaching under Infut. Mode:
${ }^{4}$) On the display, activate menu item: Infut -> Infut Mode -> Teach
${ }^{4}$ P Position the measurement object at the desired distance.
${ }^{(4)}$ Activate the "teach in" input (pin 2) (by applying $+\mathrm{U}_{\mathrm{B}}$ or GND, depending on the setting for Input Polarity, see chapter 7.2.1).
The duration of the activation of the teach input determines the teach step according to the table shown below.

Teach function	Duration T of teach signal
Switching output Q1 Teach point, see chapter 7.4.1	$20 \ldots 80 \mathrm{~ms}$
Switching output Q2 (devices with 2 switching outputs) Teach point, see chapter 7.4.1	$120 \ldots 180 \mathrm{~ms}$
Distance value for start of measurement range = 1V or 4mA at analog output (pin 5)	$220 \ldots 280 \mathrm{~ms}$
Distance value for end of measurement range $=$ 10V or 20 mA at analog output (pin 5)	$320 \ldots 380 \mathrm{~ms}$

Table 7.10: Teach function in correspondence with the duration of the teach signal
The menu entries can be used to check that the teach values are properly accepted and to make any changes.

Bild 7.3: Teach signal curve for time-of-flight sensors

Notice

If the inactive level is permanently applied to the teach input, the teach input is locked. If the menu is set to Infut -> InFut. Hode $->$ Infut folarit's -> Active Lob +by, inverted input signals are used for teaching.

7.5 Trigger

No continuous measurement occurs while in Infut. Mode -> Trieser.
An ascending edge at the "teach in" input (pin 2) triggers a single measurement; the measurement value is present at the output until the next trigger event. This applies for ODS-models with analog output and serial output.
In this way it is possible to precisely perform individual measurements for the trigger signal in combination with a photoelectric sensor even in dynamic situations.

7.6 Measurement modes

In the Aprlication menu, you can set 3 or 4 different measurement modes. The effect on the measurement behavior of the ODS depends on the device:

Triangulation sensors Δ TRI

- Standard: Standard setting
- Frecision: High accuracy, abt. 95\% slower
- SFeed: Fast measurement, abt. 30\% faster
- Light Suffression: Higher insensitivity towards ambient light

The following table provides an overview of the effects of the individual parameters on the measurement function.

	Accuracy	Measurement time / updating	Ambient light	Varying diffuse reflection
Standard	+	+	+	+
Precision	++	-	+	+
Speed	-	++	+	+
Light Suppression	+	-	++	0

Tabelle 7.11: Effects of the measurement modes for triangulation sensors

Time-of-flight sensors Ω TOF

- Standard: Standard setting
- Frecision: Factory setting, accuracy twice as high compared to standard, about 5 times slower
- SFeed: Accuracy three times lower compared to standard, about 8 times faster

The following table provides an overview of the effects of the individual parameters on the measurement function.

	Accuracy	Measurement time	Measurement value update	Ambient light
Standard	+	10 ms	+	++
Precision	++	50 ms	--	++
Speed	-	1.2 ms	++	++

Tabelle 7.12: Effects of the measurement modes for time-of-flight sensors

7.7 Measure filter

In the Aprlication menu, you can set 5 different measurement filters. This affects the measurement behavior of the ODS as follows:

- Off: No filtering of the measurement values.
- Averasins: A sliding average is calculated and output from the last 2 ... 99 measurement values (set the number with Measurem. Count.). If the measurement value changes abruptly, the output value moves linearly over the course of n measurements from the old measurement value to the new measurement value. Thus, the time for measurement value updating is not affected by the number of measurements; the response time for distance changes becomes slower.
- Center Yolue: Filter out extreme values - the average value is calculated from every $10 \ldots 50$ single measurements. The number of single measurements to be used is selected with Measurem. Count. (10, 20, 30, 40 or 50). The setting made under Filter Iefth specifies whether only the most extreme (Coorse), medium (Hedium) or minor deviations (Fine) should be filtered out.
- Feak 1): Filters out jumps in measurement values. Measurement values are only passed on if the difference to the last measurement value is not too large. Following a change in distance, the values are not output until the distance value has quieted back down. The setting under Feak Window is used to specify whether only medium (Medium) measurement jumps are to be filtered out or if smaller (Fine) jumps are to be filtered as well.
- Ronge 1): The measurement value output is limited to the range which is defined with Ronse Lower Fos: and Ronse Upfer Fos., located down further in the menu. Example with Ronse Lower Fos: $=300 \mathrm{~mm}$ and Range UfFer Fos: $=400 \mathrm{~mm}$:
- for distances $<300 \mathrm{~mm}, 300 \mathrm{~mm}$ is output as measurement value
- between 300 mm and 400 mm , the actual measurement value is output
- for distances $>400 \mathrm{~mm}, 400 \mathrm{~mm}$ is output as measurement value.

Notice

For Center Yalue, the time for measurement value updating increases considerably!

The following table provides an overview of the effects of the individual parameters on the measurement function.

	Updating measure- ment time	Response time to small changes in distance	Response time to large changes in distance	Filtering individual incorrect measurements	Filtering cumulative incorrect measurements
Off	+	+	+	--	--
Averaging	+	-	-	0	-
Center Value	-	-	-	++	+
Peak	0	+	0	+	-
Range	+	+	-	0	0

Tabelle 7.13: Effects of Measure Filter

1) Sensors with an IO-Link interface do not have this menu item available.

7.8 Distance calibration

Using the Distance Correct. ${ }^{1)}$ menu item, it is possible to influence the measured distance value.

Notice

Offset and Preset are used for correcting the measurement value by a fixed amount. Referencing, on the other hand, increases the accuracy of measurements in the distance range near the taught reference distance. To obtain the most exact measurement accuracy possible, referencing should be performed as close to the measurement as possible. Execution of the referencing function via the teach input is ideally suited for this.

7.8.1 Preset or Offset

Deviations which occur while mounting the ODS can be compensated for by the Offset ${ }^{1)}$ or Preset ${ }^{1)}$ parameter:

- For Offset, a fixed value and sign are specified.
- For Preset, a nominal measurement value is specified; a measurement is then performed using an object located at the desired nominal distance. The Offset parameter mentioned above is changed as a result of this measurement.

Notice

If calculation of the offset results in negative measurement values, zero is output at the interface and on the display.

Setting the offset ${ }^{1)}$

Configuration is performed using the key pad and display:
) Select:
Afflication -> Distance Correct. -> Offeet/Preset.
${ }^{4}$) Then enter the offset value:
Aprlication - Of fset.
The set offset value is added to the measured distance value of the sensor.

Example:

Measurement value of the ODS 96B: 1500 mm
Input:
Offset: -100 mm
Output on the display and at the interface: 1400 mm

[^0]
Setting the preset ${ }^{1)}$

Configuration is performed using the key pad and display:
(7) Select:

AFFlication -> Distance Correct. -> Offeet/Preset.
${ }^{4}$) Then enter the preset value:
AFFlication-> Freset Fosition
${ }^{4}$ Position an object at the desired preset distance.
${ }^{4}$ Perform a preset measurement:
AfFlication-> Fres.-0ffs. Calc. -> Execute
The offset value is automatically calculated from the measurement value and nominal measurement value (preset value) and entered as the offset in the configuration.

Example:

Input: Preset value: 1400 mm ,

Object dist. 1300 mm in front of ODSL 96B: Preset Calculation ...active, trigger measurement with Execute, an offset of +100 mm is automatically stored
Object distance 1300 mm :
Object distance 1400 mm :
Output on display and at interface: 1400 mm
Output on display and at interface: 1500 mm

Notice

Deactivating Offset / Preset ${ }^{1)}$

If the Freset or Dist. Referencing function is activated in the Input menu, then first activate another function in the Input menu: Teach Time Ctrl:, Teach Slope Crtin, Teach, Trisyer or Activation. Afterwards, the offset correction can be deactivated by setting the offset value to zero or by selecting a different mode under Distance Correct. In the latter case, when the "Offset/Preset" mode is reselected, the most recently set offset and preset values are again available.

[^1]
7.8.2 Referencing for triangulation sensors $\Delta T R I$

ODS triangulation sensors have a referencing function for the internal calibration of the sensor.

Notice

The referencing function is not available for time-of-flight sensors (Ω TOF).
By carrying out the integrated reference measurement function before a measurement, the sensor's accuracy can be improved by having the ODS also measure the environmental conditions during reference measurement. The corrective value determined here is used if referencing is activated.
(4) Select:

Afflication-> Distance Correct. -> Referencins
$\left.{ }^{4}\right)$ Then enter the reference value:
AFFlication -> Ref. Fosition
(4) Before referencing, position an object in front of the ODS at the desired reference distance.
4) Perform a reference operation:

- Using a command: In remote control mode, see chapter 4.6.2
- Using teach-in: To do this, use the menu or software to activate the Infut $->$ Infut. Mode $->$ Dist. Referencing function.
Then each time the teach input (pin 2) is activated, referencing is performed.
- Using a menu command: Use the menu or software to set AFFlication -> Distance Correct. -> Referencing, and then execute the AFFlication-> Ref. Colculation -> Execute menu command.
This starts a one-time referencing operation.
The referencing correction is deactivated by selecting a different mode under Distonce Correct. (Off or OffeetPreset). When the Referencine mode is again selected, the most recently set reference distance is again available. If re-referencing is not performed, the old corrective values may result in incorrect measurement values.

Notice

In particular, the referencing function should be performed for changing environmental conditions. In addition, you should perform referencing prior to all measurements which have elevated accuracy requirements.
While executing the referencing function (duration abt. 2s), no measurements are possible; the reference object must remain still during this period!

Notice
For the ODS... 9/96B, referencing is a selective calibration on a target located at a specified reference distance. The entire measurement system is not referenced as it is with the ODSL 30.

7.8.3 Teach-in of Offset and Preset via the binary input

\leadsto Activate the desired function through the Input menu:

Infut. Mode -> Freset or Distance Referencing (only Δ TRI)
${ }^{4}$) Before distance calibration, position an object in front of the sensor at the desired distance.

Distance calibration with triangulation sensors Δ TRI

${ }^{4}$) Activate the "teach in" input (pin 2) (by applying $+\mathrm{U}_{\mathrm{B}}$ or GND, depending on the setting for Input Polarity, see chapter 7.2.1).
The duration of the activation of the teach input determines the teach step according to the table shown below. The teach event is indicated by the flashing of the LEDs and on the display.

Teach function	Duration of teach signal	Green LED	Yellow LED
Preset or Distance Referencing	$2 \ldots 4 \mathrm{~s}$	flash synchronously	

Table 7.14: Distance calibration via binary input with triangulation sensors

Distance calibration for time-of-flight sensors ЛTOF

${ }^{4}$) Activate the "teach in" input (pin 2) (by applying $+U_{B}$ or GND, depending on the setting for Input Polarity, see chapter 7.2.1).

The duration of the activation of the teach input determines the teach step according to the table shown below.

Teach function	Duration of teach signal
Preset	$20 \ldots 80 \mathrm{~ms}$

Table 7.15: Distance calibration via binary input with time-of-flight sensors

8 Configuration software

General description

The configuration software make it possible to operate all ODSL 9, ODS... 96B/ODK 96 B, with the exception of the sensors with an IO-Link interface.
For sensors with IO-Link, please observe the notes in chapter 4.5 and chapter 5.5.
The configuration software can be used together with a connected distance sensor to create device configurations.
Without a connected distance sensor the program works in the Demo mode.
You can download the software on the Internet from www.leuze.com.

8.1 Connecting to a PC

The distance sensor is connected to a PC via the UPG 10 configuration adapter. The adapter is simply inserted between the sensor and the connection cable. The UPG 10 is connected to the PC via the serial interface cable that ships with the UPG 10.

Bild 8.1: Connecting the distance sensor via the UPG 10 configuration adapter

8.2 Installing the configuration software

Requirements for the installation of the configuration software:

- Pentium ${ }^{\circledR}$ or faster Intel ${ }^{\circledR}$ processor (or compatible models, e.g. AMD ${ }^{\circledR}$)
- At least 64 MB free main memory (RAM)
- Hard disk with at least 30 MB free memory
- RS 232 interface for sensor configuration
- Microsoft ${ }^{\circledR}$ Windows 98/NT/2000/XP/7

Installation

You can download the configuration software on the Internet from www.leuze.com. The software is located under the Download tab of the selected distance sensor.
${ }^{4}$) Copy the file into a suitable folder on your storage drive and unpack the zip file.
』) Start the installation by double-clicking on the "setup.exe" file. Administrator privileges are necessary for this purpose.

8.3 Starting the program

After successful installation and restart of the computer, the configuration software is ready to use.
${ }^{4}$ Select the ODS configuration software icon from the program group.
If no sensor is connected, the software boots in demo mode.

Notice

The ODS configuration software automatically finds the UPG 10 on the serial ports COM1 to COM10. If a non-supported COM port, e.g. COM11, is assigned during the automatic installation of the serial driver, then a COM port supported by the software must be assigned to operate the UPG 10.

You can adapt the COM port setting as follows:
$\stackrel{4}{4}$ In the operating system, assign the value 1 to the system variable
"devmgr_show_nonpresent_devices" (System control -> System -> Advanced system settings -> Environmental variable).

Bild 8.2: System variable "devmgr_show_nonpresent_devices"
${ }^{4}$) Open the device manager and in the "View" menu select the menu item "Show suppressed devices" (System control -> Device manager -> View). Now, under "Connections", all interfaces (including unconnected ones) are shown to which a COM port has been assigned.
4. Assign a serial port, COM1 to COM10, to the COM port to which the UPG 10 is connected (Select COM port -> Properties -> Connection settings-> Advanced -> COM connection number).

Bild 8.3: COM port properties - connection settings "Advanced"

8.4 ODS configuration software main window

After selecting a device type and confirming with OK, the following window appears:

Bild 8.4: ODS configuration software - main window
The menu bar of the ODS configuration software offers the following functions

- File -> Exit program
- Options -> Language and interface selection. German and English are the available languages. Under Interface, you must select the COM port to which the distance sensor is connected. The necessary communication parameters are automatically set for the interface.

Additional functions can be executed in the main window:

- Start measurement and Stop measurement are used to graphically represent the measurement values in the main window.

Bild 8.5:ODS configuration software - measurement

- Use Print to send the currently detected measurement curve to the default Windows printer.
- Save measured values saves the current measurement values in a text file
- Parameterization opens the configuration window, see next chapter

8.5 Configuration window

The individual menu items are self-explanatory and correspond to the menus of the display in the distance sensor. Explanations of the possible settings can be found in chapter 7.2.

Bild 8.6: ODS configuration software - configuration window

8.5.1 Description of the command buttons

The command buttons at the bottom of the screen have the following functions:

Load parameters

Loads a saved configuration from the hard disk.

Save parameters

Saves a created configuration on the hard disk.

Factory Settings

Resets the connected distance sensor to factory settings.

Read parameters from ODS

Reads and displays the configuration of the connected ODS 96B.

Write parameters to ODS

Saves the current configuration in the non-volatile parameter memory of the ODS 96B

Quit parameterization

Ends the program

Notice

Leuze electronic can only deliver distance sensors with default settings. You as customer are responsible for correct storage of your changed data sets. Back-up your device configuration on data carriers.

9 Specifications ODSL 9

9.1 Optical data and certifications

	$\begin{aligned} & \text { ODSL 9/...-100-S12 } \\ & \text { Laser } \end{aligned}$	ODSL 9/...-200-S12 Laser	ODSL 9/...-450-S12 Laser	ODSL 9/...C1-450-S12 Laser	ODSL 9/...-650-S12 Laser
Optical data					
Measurement ranges ${ }^{11}$	$50 \ldots 100 \mathrm{~mm}$	$50 \ldots 200 \mathrm{~mm}$	50 ... 450 mm	$50 \ldots 450 \mathrm{~mm}$	$50 \ldots 650 \mathrm{~mm}$
Resolution	0.01 mm	$0.01 \ldots 0.1 \mathrm{~mm}$	0.1 mm	0.1 mm	$0.1 \ldots 0.5 \mathrm{~mm}$
Light source	laser	laser	laser	laser	laser
Wavelength	$\begin{aligned} & \text { 655nm } \\ & \text { (red light) } \end{aligned}$	655 nm (red light)	$\begin{aligned} & 655 \mathrm{~mm} \\ & \text { (red light) } \end{aligned}$	655 nm (red light)	655 mm (red light)
Laser class (acc. to IEC 60825-1:2007, 21 CFR 1040.10 with Laser Notice No. 50)	2	2	2	1	2
Light spot diameter	divergent, $1 \times 1 \mathrm{~mm}^{2}$ at 100 mm distance	divergent, $1 \times 1 \mathrm{~mm}^{2}$ at 100 mm distance	divergent, $1 \times 1 \mathrm{~mm}^{2}$ at 450 mm distance	divergent, $1 \times 1 \mathrm{~mm}^{2}$ at 450 mm distance	divergent, $1 \times 1 \mathrm{~mm}^{2}$ at 450 mm distance
Error limits ${ }^{2)}$					
Absolute measurement accuracy ${ }^{1)}$	$\pm 0.5 \%$	$\pm 0.5 \ldots \pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$
Repeatability ${ }^{3)}$	$\pm 0.25 \%$	$\pm 0.25 \ldots 0.5 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$
$\begin{aligned} & \hline \text { B/W detection thresholds } \\ & (6 \% / 90 \%) \\ & \hline \end{aligned}$	$\leq 0.5 \%$				
Temperature compensation	yes ${ }^{4)}$	yes ${ }^{4}$	yes ${ }^{4)}$	yes ${ }^{4}$	yes ${ }^{4}$
Timing					
Measurement time ${ }^{1)}$	2 ms	2 ms	2 ms	4ms	2 ms
Response time	$\leq 6 \mathrm{~ms}$	$\leq 6 \mathrm{~ms}$	$\leq 6 \mathrm{~ms}$	$\leq 12 \mathrm{~ms}$	$\leq 6 \mathrm{~ms}$
Delay before start-up	$\leq 300 \mathrm{~ms}$				
Certifications					
UL508, C22.2No.14-1356)	Yes	Yes	Yes	Yes	Yes

1) Luminosity coefficient $6 \ldots 90 \%$, complete measurement range, "Standard" operating mode, at $20^{\circ} \mathrm{C}$, medium range U_{B}, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
2) After an operating time of 20 min ., the device has reached the operating temperature required for an optimal measurement.
3) Same object, identical environmental conditions, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
4) Typ. $\pm 0.02 \% / \mathrm{K}$
5) For UL applications: only for use in "Class 2" electrical circuits according to NEC
6) These sensors shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

9.2 Electrical data, installation data

1) For UL applications: only for use in "Class 2" electrical circuits according to NEC
2) The push-pull switching outputs must not be connected in parallel
3) Factory setting, $1 \ldots 10 \mathrm{~V} / 0 \ldots 10 \mathrm{~V} / 1 \ldots 5 \mathrm{~V} / 0 \ldots 5 \mathrm{~V}$ adjustable
4) 1=transient protection, 2=polarity reversal protection, $3=$ short-circuit protection for all outputs
5) Rating voltage 50 V AC with closed cover

9.3 Dimensioned and connection drawings

ODSL 9 laser models

Bild 9.1: Dimensioned drawing ODSL 9...

ODSL 9 /C6 with analog current output, 1 input and 1 switching output

Bild 9.2: Electrical connection ODSL 9/C6...
ODSL 9 /C66 with analog current output and 2 switching outputs

Bild 9.3: Electrical connection ODSL 9/C66...
ODSL 9 /V6 with analog voltage output, 1 input and 1 switching output

$-2 \rightarrow)-\frac{\mathrm{ws} / \mathrm{WH}}{\mathrm{bl} / \mathrm{BU}}$

Bild 9.4: Electrical connection ODSL 9/V6...
ODSL 9/V66 with analog voltage output and 2 switching outputs

Bild 9.5: Electrical connection ODSL 9/V66...

ODSL 9/L with IO-Link interface

Bild 9.6: Electrical connection ODSL 9/L...
ODSL 9/D26 with serial RS 232 interface

$\begin{array}{r} \text { 10-30V DC }+(-1 \rightarrow \square) \mathrm{ws} / \mathrm{WH} \\ \text { RXD }-2 \rightarrow \square) \mathrm{bl/BU} \\ \text { GND }-3 \rightarrow \square) \mathrm{sw} / \mathrm{BK} \\ \text { O } \overline{\hat{\theta}}-4 \rightarrow \square) \mathrm{gr} / \mathrm{GY} \\ \text { TXD }-5 \rightarrow \square) \end{array}$	

Bild 9.7: Electrical connection ODSL 9/D26...
ODSL 9/D36 with serial RS 485 interface

Bild 9.8: Electrical connection ODSL 9/D36...
ODSL 9/66 with 2 teachable push/pull outputs

Bild 9.9: Electrical connection ODSL 9/66...

10 Specifications ODS... 96B/ODK... 96B

10.1 Optical data and certifications for triangulation sensors \triangle TRI

	ODS(R) 96B Red light / infrared light	ODSL(R) 96B Laser	ODSL 96B...C1... Laser
Optical data			
Measurement ranges ${ }^{1)}$	$\begin{aligned} & 100 \ldots 600 \mathrm{~mm} \\ & 120 \ldots 1400 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 60 \ldots 2000 \mathrm{~mm} \\ & 150 \ldots 2000 \mathrm{~mm} \\ & 150 \ldots 800 \mathrm{~mm} \text { ("S") } \\ & 150 \ldots .1200 \mathrm{~mm} \text { ("XL") } \end{aligned}$	$150 . . .1500 \mathrm{~mm}$ ("S")
Resolution	$\begin{aligned} & 0.1 \ldots 0.5 \mathrm{~mm}(600 \mathrm{~mm}) \\ & 0.1 \ldots .1 \mathrm{~mm}(1400 \mathrm{~mm}) \end{aligned}$	$\begin{array}{lll} 1 \ldots & 3 \mathrm{~mm} \\ 0.1 & \ldots & 0.5 \mathrm{~mm} \text { ("S") } \\ 0.1 & \ldots & 1.5 \mathrm{~mm} \text { ("XL") } \end{array}$	0.1 ... 2mm ("S")
Light source	LED (modulated light)	laser (modulated light)	laser (modulated light)
Wavelength	880nm (infrared) 635 mm (red light)	655 nm	655 nm
Laser class (acc. to IEC 60825-1:2007, 21 CFR 1040.10 with Laser Notice No. 50)	-	2	1
Light spot diameter	abt. 15 mm at 600 mm distance	divergent min. $2 \mathrm{~mm} \times 6 \mathrm{~mm}$ at 2000 mm distance divergent, $1 \mathrm{~mm} \times 1 \mathrm{~mm}$ at 800 mm distance ("S") divergent, $15 \mathrm{~mm} \times 4 \mathrm{~mm}$ at 800 mm distance ("XL")	divergent, $1 \mathrm{~mm} \times 1 \mathrm{~mm}$ at 800 mm distance ("S")
Error limits ${ }^{2}$			
Absolute measurement accuracy ${ }^{1)}$	$\pm 1.5 \%$	$\begin{aligned} & 60 \ldots 150 \mathrm{~mm}: \\ & \pm 3 \mathrm{~mm} \\ & 150 \ldots 2000 \mathrm{~mm}: \\ & \pm 1.5 \% \end{aligned}$	$\pm 1.5 \%$
Repeatability ${ }^{\text {3) }}$	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$
$\begin{aligned} & \begin{array}{l} \text { B/W detection thresholds } \\ (6 \% / 90 \%) \end{array} \\ & \hline \end{aligned}$	$\leq 1 \%$	$\leq 1 \%$	$\leq 1 \%$
Temperature compensation	yes 4)	yes ${ }^{4)}$	yes ${ }^{4)}$
Timing			
Measurement time	$1 \ldots 5 \mathrm{~ms}^{1)}$	$1 \ldots 5 \mathrm{~ms}^{11}$	$12 \ldots 60 \mathrm{~ms}^{115}$
Response time	$\leq 15 \mathrm{~ms}$	$\leq 15 \mathrm{~ms}$	$\leq 180 \mathrm{~ms}{ }^{11}$
Delay before start-up	$\leq 300 \mathrm{~ms}$	$\leq 300 \mathrm{~ms}$	$\leq 300 \mathrm{~ms}$
Certifications			
UL508, C22.2No.14-13677)	yes	yes	no

1) Luminosity coefficient $6 \ldots 90 \%$, complete measurement range, "Standard" operating mode, at $20^{\circ} \mathrm{C}$, medium range U_{B}, measurement object $350 \times 50 \mathrm{~mm}^{2}$
2) After an operating time of 20 min ., the device has reached the operating temperature required for an optimal measurement.
3) Same object, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
4) Typ. $\pm 0.02 \% / \mathrm{K}$
5) Measurement time in factory setting (ambient light measure mode), operation in other measure modes is not recommended
6) For UL applications: only for use in "Class 2" electrical circuits according to NEC
7) These sensors shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

10.2 Optical data and certifications for time-of-flight sensors תTOF

	ODSL 96B Laser	ODSIL 96B Laser	ODKL 96B Laser
Optical data			
Measurement ranges	$\begin{aligned} & 300 \ldots 10,000 \mathrm{~mm} \\ & \text { (90\% diffuse reflection) } \\ & 300 \ldots 6000 \mathrm{~mm} \\ & (6 \ldots 90 \% \text { diffuse } \\ & \text { reflection) } \end{aligned}$	$\begin{aligned} & 300 \ldots 10,000 \mathrm{~mm} \\ & \text { (90\% diffuse reflection) } \\ & 300 \ldots 6000 \mathrm{~mm} \\ & \text { (6 } \ldots 90 \% \text { diffuse } \\ & \text { reflection) } \end{aligned}$	300 ... 25000 mm onto high gain tape
Resolution	3 mm	3 mm	3 mm
Light source	laser	laser	laser
Wavelength	658nm (red light)	785nm (infrared light)	658nm (red light)
Alignment laser wavelength		658nm (red light)	
Laser class (acc. to IEC 60825-1:2007, 21 CFR 1040.10 with Laser Notice No. 50)	2	1	2
Light spot diameter	divergent, $7 \times 7 \mathrm{~mm}^{2}$ at $10,000 \mathrm{~mm}$ distance	divergent, $7 \times 7 \mathrm{~mm}^{2}$ at $10,000 \mathrm{~mm}$ distance	divergent, $7 \times 7 \mathrm{~mm}^{2}$ at $10,000 \mathrm{~mm}$ distance
Error limits (relative to $\mathbf{6 0 0 0} \mathbf{m m}$) ${ }^{1)}$			
Absolute measurement accuracy	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 0.3 \%{ }^{2)}$
Repeatability ${ }^{3}$	$\pm 5 \mathrm{~mm}$	$\pm 5 \mathrm{~mm}$	$\pm 5 \mathrm{~mm}$
B/W detection thresholds $(6 \% / 90 \%)$	$\pm 10 \mathrm{~mm}$	$\pm 10 \mathrm{~mm}$	-
Temperature drift	$\pm 1.5 \mathrm{~mm} / \mathrm{K}$	$\pm 1.5 \mathrm{~mm} / \mathrm{K}$	$\pm 1.5 \mathrm{~mm} / \mathrm{K}$
Timing			
Measurement time	Operating mode "Speed": 1.4 ms "Standard": 10 ms "Precision": 30 ms 4)	Operating mode "Speed": 2.8 ms "Standard": 20 ms "Precision": $100 \mathrm{~ms}^{3)}$	Operating mode "Speed": 1.4 ms "Standard": 10 ms "Precision": $50 \mathrm{~ms}^{3)}$
Delay before start-up	$\leq 300 \mathrm{~ms}$	$\leq 300 \mathrm{~ms}$	$\leq 300 \mathrm{~ms}$
Certifications			
UL508, C22.2No.14-135/6)	yes	yes	yes

1) After an operating time of 20 min ., the device has reached the operating temperature required for an optimal measurement.
2) Relative to $25,000 \mathrm{~mm}$
3) Same object, measurement object $\geq 50 \times 50 \mathrm{~mm}^{2}$
4) Factory setting
5) For UL applications: only for use in "Class 2" electrical circuits according to NEC
6) These sensors shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

10.3 Electrical data, installation data: triangulation sensors Δ TRI

	$\begin{gathered} \text { ODS(L/R) 96B } \\ \text { M/C... } \end{gathered}$	$\begin{gathered} \text { ODS(L/R) 96B } \\ \text { M/V... } \end{gathered}$	$\begin{gathered} \text { ODS(L/R) 96B } \\ \text { M/D... } \end{gathered}$	$\begin{gathered} \text { ODS(L/R) 96B } \\ \text { M/(C)66... } \end{gathered}$	$\begin{gathered} \text { ODS(L/R) 96B } \\ \text { L... } \end{gathered}$
Electrical data					
Operating voltage $\mathrm{U}_{\mathrm{B}}{ }^{1)}$	$18 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)				
Residual ripple	$\leq 15 \%$ of U_{B}				
Bias current	$\leq 150 \mathrm{~mA}$				
Switching outputs ${ }^{2)}$	1 push/pull output, teachable			2 push/pull outputs, teachable	
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$				
Analog output	$\begin{gathered} \text { current } \\ 4 \ldots 20 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}} \leq 5000 \mathrm{hm} \\ \hline \end{gathered}$	$\begin{gathered} \text { voltage } \\ 1 \ldots 10 \mathrm{~V}{ }^{3)} \\ \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{kOmm} \\ \hline \end{gathered}$			
Output current	max. 100 mA for each push/pull output				
Serial interface RS 232, RS 485			9600 baud, configurable baud rate		
Transmission protocol			2/3 byte transmission, const. data flow, see chapter 4.6		
10-Link					COM 2 (38400 baud)
Mechanical data					
Housing	diecast zinc				
Optics cover	glass				
Weight	380 g				
Connection type	M12 connector				
Environmental data					
Ambient temp. (operation/storage)	$-20 \ldots+50^{\circ} \mathrm{C} /-30 \ldots+70^{\circ} \mathrm{C}$				
Ambient light limit	\geq 5kLux				
Protective circuit 4)	1,2,3				
VDE safety class ${ }^{5}$	II, all-insulated				
Protection class	IP 67, IP 69K ${ }^{\text {6 }}$				
Standards applied	IEC 60947-5-2, 21 CFR 1040.10				

1) For UL applications: only for use in "Class 2 " electrical circuits according to NEC
2) The push-pull switching outputs must not be connected in parallel
3) Factory setting, $1 \ldots 10 \mathrm{~V} / 0 \ldots 10 \mathrm{~V} / 1 \ldots 5 \mathrm{~V} / 0 \ldots 5 \mathrm{~V}$ adjustable
4) 1=transient protection, $2=$ polarity reversal protection, $3=$ short-circuit protection for all outputs
5) Rating voltage 250 V AC with closed cover
6) IP 69 K test acc. to DIN 40050 part 9 simulated, high pressure cleaning conditions without the use of additives, acids and bases are not part of the test.

10.4 Electrical data, installation data: time-of-flight sensors תTOF

	$\begin{gathered} \text { OD...L 96B M/ } \\ \text { C... } \end{gathered}$	$\begin{gathered} \text { OD...L 96B M/ } \\ \text { V... } \end{gathered}$	$\begin{gathered} \text { OD...L 96B M/ } \\ \text { D... } \end{gathered}$	OD...L 96B M/ (C)66...	$\begin{gathered} \text { OD...L 96B M/ } \\ \text { L... } \end{gathered}$
Electrical data					
Operating voltage U_{B}	$18 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)				
Residual ripple	$\leq 15 \%$ of U_{B}				
Bias current	$\leq 150 \mathrm{~mA}$				
Switching outputs ${ }^{1)}$	1 push/pull output, teachable			2 push/pull outputs	
Signal voltage high/low	$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$				
Analog output	$\begin{gathered} \text { current } \\ 4 \ldots 20 \mathrm{~mA} \\ \mathrm{R}_{\mathrm{L}} \leq 5000 \mathrm{hm} \end{gathered}$	$\begin{gathered} \text { voltage } \\ 1 \ldots 10 \mathrm{~V} \text { 2), } \\ \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{kOhm} \end{gathered}$			
Output current	max. 100 mA for each push/pull output				
Serial interface RS 232, RS 485			9600 baud, configurable baud rate		
Transmission protocol			2/3 byte transmission, const. data flow, see chapter 4.6		
10-Link					$\begin{gathered} \text { COM } 2 \\ \text { (38400 baud) } \end{gathered}$
Mechanical data					
Housing	diecast zinc				
Optics cover	glass				
Weight	380 g				
Connection type	M12 connector				
Environmental data					
Ambient temp. (operation/storage)	$-20 \ldots+50^{\circ} \mathrm{C} /-30 \ldots+70^{\circ} \mathrm{C}$				
Ambient light limit	$\geq 50 \mathrm{kLux}$				
Protective circuit ${ }^{3}$	1,2,3				
VDE safety class ${ }^{4}$	II, all-insulated				
Protection class	IP 67, IP 69K ${ }^{\text {5 }}$				
Standards applied	IEC 60947-5-2, 21 CFR 1040.10 and 1040.11				

1) The push-pull switching outputs must not be connected in parallel
2) Factory setting, $1 \ldots 10 \mathrm{~V} / 0 \ldots 10 \mathrm{~V} / 1 \ldots 5 \mathrm{~V} / 0 \ldots 5 \mathrm{~V}$ adjustable
3) 1=transient protection, 2=polarity reversal protection, 3=short-circuit protection for all outputs
4) Rating voltage 250 V AC with closed cover
5) IP 69 K test acc. to DIN 40050 part 9 simulated, high pressure cleaning conditions without the use of additives, acids and bases are not part of the test.

10.5 Dimensioned and connection drawings

ODS 96B red-light and infrared models, triangulation sensors Δ TRI

Bild 10.1:Dimensioned drawing ODS 96B..., ODSR 96B...

ODSL... 96B laser models, triangulation sensors \triangle TRI

Bild 10.2: Dimensioned drawing triangulation sensors ODSL(R) 96B...

ODSL 96B/ODKL 96B laser models, time-of-flight sensors תTOF

Bild 10.3: Dimensioned drawing time-of-flight sensors ODSL 96B.../ODKL 96B..

ODSIL 96B laser models, time-of-flight sensors Ω TOF

Bild 10.4:Dimensioned drawing of ODSIL 96B... time-of-flight sensors

ODS... 96B/ODK...96B M/C with analog current output

$\begin{array}{r} 18-30 \mathrm{~V} \text { DC }+(-1 \rightarrow) \mathrm{br} / \mathrm{BN} \\ \text { teach in }-2 \rightarrow \mathrm{ws} / \mathrm{WH} \\ \mathrm{GND}-3 \rightarrow \mathrm{bl} / \mathrm{BU} \\ 0 \overline{\mathrm{e}}-4 \rightarrow \mathrm{sw} / \mathrm{BK} \\ 4-20 \mathrm{~mA} \\ 4 \end{array}$

Bild 10.5:Electrical connection ODS... 96B/ODK... 96B M/C...
ODS... 96B/ODK...96B M/C with analog current output and 2 warning or switching outputs

Bild 10.6:Electrical connection ODS... 96B/ODK... 96B M/C66...
ODS... 96B/ODK...96B M/V with analog voltage output

Bild 10.7:Electrical connection ODS... 96B/ODK... 96B M/V...
ODS... 96B/ODK... 96B M/L with IO-Link interface

Bild 10.8: Electrical connection ODS... 96B/ODK... 96B M/L...

ODS... 96B/ODK...96B M/D26 with serial RS 232 interface

Bild 10.9:Electrical connection ODS... 96B/ODK... 96B M/D26...
ODS... 96B/ODK...96B M/D36 with serial RS 485 interface

Bild 10.10:Electrical connection ODS... 96B/ODK... 96B M/D36...
ODS... 96B/ODK...96B M/66 with 2 teachable push/pull outputs

Bild 10.11:Electrical connection ODS... 96B/ODK... 96B M/66..

11 Type overview and accessories

11.1 ODSL 9 type overview

Type designation	Description	Part no.
ODSL 9 with laser transmitter, measurement range $50 \ldots 650 \mathrm{~mm}$		
ODSL 9/C6-650-S12	Measurement range $50 \ldots 650 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50113583
ODSL 9/V6-650-S12	Measurement range $50 \ldots 650 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50114627
ODSL 9/D36-650-S12	Measurement range $50 \ldots 650 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50120000
ODSL 9/L-650-S12	Measurement range $50 \ldots 650 \mathrm{~mm}$, IO-Link interface, laser class 2	50120825
ODSL 9 with laser transmitter, measurement range $50 \ldots 450 \mathrm{~mm}$		
ODSL 9/C6-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50111157
ODSL 9/C6.C1-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 1	50115029
ODSL 9/V6-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50111158
ODSL 9/V6.C1-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 1	50115030
ODSL 9/L-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, IO-Link interface, laser class 2	50111166
ODSL 9/D26-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, RS 232 serial connection, 1 push/pull output, laser class 2	50111159
ODSL 9/D36-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50111160
ODSL 9/C66-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 2 push/pull outputs, laser class 2	50111161
ODSL 9/V66-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 2 push/pull outputs, laser class 2	50111162
ODSL 9/66-450-S12	Measurement range $50 \ldots 450 \mathrm{~mm}$ 2 teachable push/pull outputs, laser class 2	50111163
ODSL 9 with laser transmitter, measurement range $50 \ldots 200 \mathrm{~mm}$		
ODSL 9/C6-200-S12	Measurement range $50 \ldots 200 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50117334
ODSL 9/V6-200-S12	Measurement range $50 \ldots 200 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50113332

Tabelle 11.1: ODSL 9 type overview

Type designation	Description	Part no.
ODSL 9 with laser transmitter, measurement range $50 \ldots 100 \mathrm{~mm}$		
ODSL 9/C6-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50111167
ODSL 9/V6-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50111168
ODSL 9/L-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, IO-Link interface, laser class 2	50111174
ODSL 9/D26-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, RS 232 serial connection, 1 push/pull output, laser class 2	50111169
ODSL 9/D36-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50111170
ODSL 9/C66-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 2 push/pull outputs, laser class 2	50111171
ODSL 9/V66-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 2 push/pull outputs, laser class 2	50111172
ODSL 9/66-100-S12	Measurement range $50 \ldots 100 \mathrm{~mm}$, 2 teachable push/pull outputs, laser class 2	50111173

Tabelle 11.1: ODSL 9 type overview

11.2 ODS... 96B/ODK... 96B type overview

11.2.1 Triangulation sensors $\Delta T R I$

Type designation	Description	Part no.
ODSL 96B with laser transmitter, measurement range $150 \ldots 2000 \mathrm{~mm}$		
ODSL 96B M/C6-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50106593
ODSL 96B M/V6-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50106594
ODSL 96B M/L-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, IO-Link interface, laser class 2	50111164
ODSL 96B M/D26-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, RS 232 serial connection, 1 push/pull output, laser class 2	50106597
ODSL 96B M/D36-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50106598
ODSL 96B M/66-2000-S12	Measurement range $150 \ldots 2000 \mathrm{~mm}$, 2 teachable push/pull outputs, laser class 2	50106599
ODSLR 96B with red-light laser LED, measurement range $\mathbf{6 0} \ldots \mathbf{2 0 0 0} \mathbf{m m}$		
ODSLR 96B M/C6-2000-S12	Measurement range $60 \ldots 2000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50106732
ODSLR 96B M/V6-2000-S12	Measurement range $60 \ldots 2000 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50106733
ODSL 96B with laser transmitter, "XL" light spot, measurement range $150 . .1200 \mathrm{~mm}$		
ODSL 96B M/C6.XL-1200-S12	Measurement range $150 \ldots 1200 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, Light spot: $15 \mathrm{~mm} \times 4 \mathrm{~mm}$, 1 teachable push/pull output, laser class 2	50106736
ODSL 96B M/V6.XL-1200-S12	Measurement range $150 \ldots 1200 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, Light spot: $15 \mathrm{~mm} \times 4 \mathrm{~mm}$, 1 teachable push/pull output, laser class 2	50106737
ODSL 96B with laser transmitter, "S" light spot, measurement range $150 \ldots 800 \mathrm{~mm} / 150 \ldots 1500 \mathrm{~mm}$		
ODSL 96B M/C6.S-800-S12	Measurement range $150 \ldots 800 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 2	50106728
ODSL 96B M/V6.S-800-S12	Measurement range $150 \ldots 800 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 2	50106729
ODSL 96B M/D26.S-800-S12	Measurement range $150 \ldots 800 \mathrm{~mm}$, RS 232 serial connection, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 2	50111035
ODSL 96B M/D36.S-800-S12	Measurement range $150 \ldots 800 \mathrm{~mm}$, RS 485 serial connection, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 2	50112065
ODSL 96B M/C6.C1S-1500-S12	Measurement range $150 \ldots 1500 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 1	50123687
ODSL 96B M/V6.C1S-1500-S12	Measurement range $150 \ldots 1500 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, Light spot diameter: abt. 1 mm , 1 teachable push/pull output, laser class 1	50123686

Tabelle 11.2: Type overview triangulation sensors ODS... 96B

Type designation	Description	Part no.
ODS 96B with infrared LED		
ODS 96B M/C66.01-1400-S12	Measurement range $120 \ldots 1400 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 2 push/pull warning outputs	50106727
ODS 96B M/V6-1400-S12	Measurement range $120 \ldots 1400 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output	50110231
ODS 96B M/C-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output	50106720
ODS 96B M/V-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output	50106721
ODS 96B M/D26-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, RS 232 serial connection, 1 push/pull output	50106722
ODS 96B M/D36-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output	50106723
ODS 96B M/66-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, 2 teachable push/pull outputs	50106724
ODS 96B with red-light LED		
ODSR 96B M/C-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output	50106730s
ODSR 96B M/V-600-S12	Measurement range $100 \ldots 600 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output	50106731

Tabelle 11.2: Type overview triangulation sensors ODS... 96B

11.2.2 Time-of-flight sensors תTOF

Type designation	Description	Part no.
ODKL 96B with red-light laser transmitter, measurement range $\mathbf{3 0 0} \ldots \mathbf{2 5 , 0 0 0} \mathbf{m m}$ Measurement against high-gain reflective tape		
ODKL 96B M/C6-S12	Measurement range $300 \ldots 25000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50109297
ODKL 96B M/V6-S12	Measurement range $300 \ldots 25000 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50109298
ODKL 96B M/L-S12	Measurement range $300 \ldots 25000 \mathrm{~mm}$, IO-Link interface, laser class 2	50109301
ODKL 96B M/D26-S12	Measurement range 300 ... 25000 mm , RS 232 serial connection, 1 push/pull output, laser class 2	50109299
ODKL 96B M/D36-S12	Measurement range $300 \ldots 25000 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50109300
REF 7-A-100x100	High-gain reflective tape for ODKL 96B, cut $100 \mathrm{~mm} \times 100 \mathrm{~mm}$	50111527
ODSIL 96B with infrared laser transmitter / red-light alignment laser, measurement range $300 \ldots 10,000 \mathrm{~mm}$ Measurement against diffusely reflective objects		
ODSIL 96B M/C6-S12	Measurement range $300 \ldots 10,000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 1	50109302
ODSIL 96B M/V6-S12	Measurement range $300 \ldots 10,000 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 1	50109303
ODSL 96B with red-light laser transmitter, measurement range $\mathbf{3 0 0}$... 10000 mm Measurement against diffusely reflective objects		
ODSL 96B M/C6-S12	Measurement range $300 \ldots 10000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 1 teachable push/pull output, laser class 2	50109290
ODSL 96B M/V6-S12	Measurement range $300 \ldots 10000 \mathrm{~mm}$, analog output $1 \ldots 10 \mathrm{~V}$, 1 teachable push/pull output, laser class 2	50109291
ODSL 96B M/D26-S12	Measurement range $300 \ldots 10000 \mathrm{~mm}$, RS 232 serial connection, 1 push/pull output, laser class 2	50109292
ODSL 96B M/D36-S12	Measurement range $300 \ldots 10000 \mathrm{~mm}$, RS 485 serial connection, 1 push/pull output, laser class 2	50109293
ODSL 96B M/C66-S12	Measurement range $300 \ldots 10000 \mathrm{~mm}$, analog output $4 \ldots 20 \mathrm{~mA}$, 2 push/pull outputs, laser class 2	50109295

Tabelle 11.3: Type overview time-of-flight sensors OD...L 96B

11.3 Accessory connection cables and connectors for ODSL 9/OD...96B

Designation	Order no.	Short descriptions
KD 095-5	50020502	M12 connector (cable socket), user-configurable, 5-pin, angular
KD 095-5A	50020501	M12 connector (cable socket), user-configurable, 5-pin, axial
K-D M12W-5P-2m-PVC	50104556	PVC connection cable with cable socket on one end, 5-pin, M12, angular, 2 m
K-D M12A-5P-2m-PVC	50104555	PVC connection cable with cable socket on one end, 5-pin, M12, axial, 2 m
K-D M12W-5P-5m-PVC	50104558	PVC connection cable with cable socket on one end, 5-pin, M12, angular, 5 m
K-D M12A-5P-5m-PVC	50104557	PVC connection cable with cable socket on one end, 5-pin, M12, axial, 5 m
K-D M12W-5P-10m-PVC	50104560	PVC connection cable with cable socket on one end, 5-pin, M12, angular, 10 m
K-D M12A-5P-10m-PVC	50104559	PVC connection cable with cable socket on one end, 5-pin, M12, axial, 10 m
K-D M12W-5P-2m-PUR	50104568	PUR connection cable with cable socket on one end, 5-pin, M 12, angular, 2m
K-D M12A-5P-2m-PUR	50104567	PUR connection cable with cable socket on one end, 5-pin, M12, axial, 2 m
K-D M12W-5P-5m-PUR	50104762	PUR connection cable with cable socket on one end, 5-pin, M12, angular, 5m
K-D M12A-5P-5m-PUR	50104569	PUR connection cable with cable socket on one end, 5-pin, M12, axial, 5m

Tabelle 11.4: Accessory connection cables and connectors

11.4 Accessory mounting systems for ODSL 9/OD... 96B

Designation	Order no.	Short descriptions
Mounting systems for ODSL 9		
BT 8	50036195	Mounting bracket
BT 300M. 5	50118543	Mounting bracket, stainless steel
BTP 300M - D10	50117827	Sensor protective cover for rod Ø 10 mm
BTP 300M - D12	50117826	Sensor protective cover for rod $\varnothing 12 \mathrm{~mm}$
BTP 300M - D14	50117825	Sensor protective cover for rod $\varnothing 14 \mathrm{~mm}$
BTU 300M - D10	50117253	Sensor mounting bracket for rod $\varnothing 10 \mathrm{~mm}$
BTU 300M - D12	50117252	Sensor mounting bracket for rod Ø 12 mm
BTU 300M - D14	50117251	Sensor mounting bracket for rod $\varnothing 14 \mathrm{~mm}$
Mounting systems for ODS... 96B / ODKL 96B		
BT 450.1-96	50082084	Sensor mounting bracket for rod Ø 10mm
BT 450.3-96	50104897	Sensor mounting bracket for rod $\varnothing 12 \mathrm{~mm}$
BT 96	50025570	Mounting bracket
BT 96.1	50080614	Mounting bracket
BT 96.4	50032319	Mounting bracket
UMS 96	50026204	Universal mounting system for rod Ø 10/12/14mm
BT 56	50027375	Mounting device with dovetail for rod \varnothing 16/18/20mm
BT 59	50111224	Mounting device with dovetail for ITEM MB System

Tabelle 11.5: Accessory mounting systems

11.5 Additional accessories for ODSL 9/OD... 96B

Designation	Order no.	
Short descriptions		
PC configuration accessories		
UPG 10	50107223	Universal configuration adapter (not for IO-Link sensors)
ODS configuration software	Free download from www.leuze.com	Software for convenient PC configuration of the ODSL 9, ODS... 96B, ODKL 96B (not for IO-Link sensors)
Accessories for distance sensors with IO-Link interface		
SET MD12-US2-IL1.1 + accessories.	50121098	IO-Link master set, for sensors with IO-Link interface (V1.0.1 or V1.1)
K-DS M12A-M12A-4P-2m-PVC	50110126	Connection cable, distance sensor to IO-Link master
IODD	Free download from www.leuze.com	IO-Link Device Description
Accessories for fieldbus connection of distance sensors with RS 232 interface		
MA 204i	50112893	Modular fieldbus connection for field use, interfaces: RS232 / PROFIBUS DP
MA 208i	50112892	Modular fieldbus connection for field use, interfaces: RS232 / Ethernet TCP/IP
MA 235i	50114154	Modular fieldbus connection for field use, interfaces: RS232 / CANopen
MA 238i	50114155	Modular fieldbus connection for field use, interfaces: RS232 / EtherCAT
MA 248i	50112891	Modular fieldbus connection for field use, interfaces: RS232 / PROFINET-IO
MA 255i	50114156	Modular fieldbus connection for field use, interfaces: RS232 / DeviceNet
MA 258i	Modular fieldbus connection for field use, interfaces: RS232 / Ethernet/IP	
K-DS M12A-MA-5P-3m-S-PUR	50111224	Connection cable for ODSL 9/OD... 96B with RS232 to modular interfacing units MA 2xxi, cable length 3 m

Tabelle 11.6: Accessories for PC configuration / IO-Link / fieldbus connection

[^0]: 1) Sensors with an IO-Link interface do not have this menu item available.
[^1]: 1) Sensors with an IO-Link interface do not have this menu item available.
